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ABSTRACT

• " n--•i.•smdy. develop;Aa graph theoretic algorithm for contour surface

display generation.

The inadequacies of the currently published algorithms, with respect to

contour line generation for a subgrid. are pointed out in a brief review of the

available literature. The algorithm developed in this study, called the Large

Contouring Tree Algorithm, gets rid of the cited inadequacies.

The core corzpcnent of the introduced algorithm is a two-dimensional

contouring algorithm that operates on two-dimensional slices of a larger three-

dimensional grid. We present \the Large Contouring Tree Algorithm in the

Pascal programming language in Appendix A. •'•'rM (I -
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I. INTRODUCTION

The purpose of this study is to create and implement a graph theoretic

algorithm useful for the generation of a contour surface display. A Large

Contouring Tree Algorithm for the operations used to generate the contour
lines for a regularly subd7vided grid is developed. The new algorithm solves the

picture efficiency problems found in the literature [Refs. 1-8].

A. SOME DEFINITIONS

A contour defined surface display is a visual representation of a surface,
either wholly or partially, by the collection of lines formed when that surface is
intersected by a set of parallel planes. The lines formed on each of those planes

are called Contours. A contour represents the set oZ points that belong to both

the surfac- and the particular intersecting plane.

A formal definition is that a Contour Surface Display is a visual display

that represents all points in a particular region of a three-space <x,y,z> which

satisfy the relation f(<x,yz>)=k, where k is a constant known as the contour
level. The visual display created by this algorithm is the collection of lines that

belong to the intersection of both the set of points that satisfy the relation

f(<x,yz>), and a set of regularly spaced parallel planes that pass through the

region of three-space for which the relation is defined.

For this study, the function f is approximated by a discrete, three-
dimensional grid created by sampling that function over the volume of interest.

The three-dimensional grid contains a value e each of its defined points that

correspond; to the physical quantity obtained from the function, i.e. the value

associated with point (z0,10,zo) is ve, where f (zo.yo,zo)= vg. In order to minimize

confusion, we wifl specify the value at a particular grid point (x,y.z) by a(x,y~z),
and will specify the value at a particular point (x.y,z) of the function by f(x,y.z).

The visual display of the contour surface is created from this three-

dimensional grid by taking two-dimensional slices of the grid, and constructing

the two-dimensional, planar contours for each slice at the designated contour
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level. A slice of a three-dimensional grid is a planar, orthogonal, two-dimensional

grid assigned a constant coordinate in three-space, i.e. an x-y slice of a(<x,y,z>)

corresponds notationanly to a(<x,y>) for a particular z coordinate. The two-

dimensional, planar contours created are the lines that satisfy the relation

a(<x,y,z>)=k for a particular planar coordinate, either x,y, or z, where again k is

the constant contour level. If we contour all x-y slices of three-dimensional grid at

contour level k, we will have a stack of parallel contours approximating the

contour surface, each planar set of contours corresponding to a particular z

coordinate. If we contour all x-z slices of the three dimensional grid, we again will

have a stack of parallel contours approximating the contour surface, each planar

set of contours corresponding to a particular y coordinate.Likewise, if w- contour

all y-z slices of the three-dimensional grid, we will have a stack of parallel

contours approximating the contour surface, each planar set of contours

corresponding to a particular x coordinate.The assemblage of the three sets of

parallel, planar contours, i.e. the simultaneous display of all the contours created

for the x-y. x-z, and y-z planes of the three-dimensional grid, produces a

Chicken- Wire-Like contour surface display (see Figure 1.1). The three-

dimensional contour surface display described in this study is created by such a

procedure.

Given that the core of the contour surface display generation algorithm is the

two-dimensional slice of the three-dimensional grid, it is best that we start our

study with an understanding of the operations performed on that slice. Figure

1.2 shows a single, x-y, two-dimensional grid, with the contours drawn

correspornding to contour level 50. Figure 1.3 shows that same two-dimensional

grid, with the contours drawn corresponding to contour level 100. The two-

dimensional grid of those figures is 4x5 grid; it has four values in the x direction.

and five values in the y direction. The goal of the two-dimensional contouring

operation for such a grid is the determination of where lines are drawn on that

grid given a fixed con'.,jur levwl k. In order to develop an intuitive feel for that

determination mechanism, we restrict our foeas to a smallest portion of the

complete two-dimensional grid, the 2x2 subgrJ. The 2x2 subgrid is defined to be

that portion of the two-dimensional grid bounded by four adjacent grid points. In

8
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Figure 1.1

Contour Surface Display Generated from a Hydrogen Atom
Wavefunction Squared (3dxy orbital)
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the two-dimensional grid of Figure 1.2 and 1.3. the lower, lefthand 2x2 subgrid is

bounded by points (1 1), (2,1), (2,2); and (1,2). The upper righthand 2x2 subgrid

of the same example is bounded by points (3,4), (4,4ý, (4,5) and (3,5). This-core

algorithm has been presented in [Ref. 1] and is called the 2x2 Subgrid Algorithm.

B. A MODEL FOR CONTOURING THE 2X2 SUBGRID

The procedure used to generate the contours for a single 2x2 subgrid is the

core part of two-dimensional contouring. L we compute the contours

corresponding to contour level k for all 2x2 subgrids of a two-dimensional grid,

then we will have determined the complete set of contours for that grid. Note

that this does not make any statement as to the efficiency of that picture, i.e.

there can be duplicate copies of contours, particularly for contours drawn along

the border of a 2x2 subgrid. We briefly summarize the operations that comprise

that procedure in order to highlight potential probiems.

1. Contouring The 2x2 Subgrid

The procedure used to generate the contours for a particular 2x2 subgrid

first determines if any contours should be generated for that subgrid. That

determination is based upon whether any of the subgrid's edges contain the

desired contour level k. An edge contains contour level k if the value of that

contour level is within the range of values defined by the grid points that

comprise the edge.

The next part of the contour generation procedure for the 2x2 subgrid is

the computation of the contour edge intersections for any subgrid edges shown to

contain the contour level. The point of intersection is computed through linear

interpolation, using the grid values assigned to the endpoints of the edge and

their corresponding coordinates. The point of intersection represents the location

on the subgrid edge corresponding to the contour level k.

The determination of the connectivity necessary to form the appropriate

contours from the list of edge intersections is the next part of the contour

generation procedure. Before attempting to describe the procedure that assigns

those connectivities, we first examine the subgrid's contour crossing possibilities.
We accomplish that by looking at Figure 1.4. which shows all possible ways for

contours to cross or intersect a 2x2 subgrid.

10
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Figure 1.2
Example Contour Grid with Contours Drawn for Level 50
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Figure 1.3
Example Contour Grid with Contours Drawn for Level 100

101
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In Figwe 1.4, there are ten cases, each of which belongs to one of three

contour crossings categories:(1) single edge cr-,'wing of the 2x2, (2) double edge

crossing of the 2x2, and (3) constant edge borders at the contour level for the

2x2. The ten cases are drawn according to the following small set of rules for

contour crossings. (a) Contours are directed by the values associated with the

edges, and are directed towards edge intersections. (b) For non-equivalued edges,

if contours are indicated for a particular 2x2 subgrid, i.e. there are edges in the

subgrid that contain the contour level, there is only one point of inte.-section for

each edge of that subgrid. (c) Contours are continuous, i.e. if a contour enters a

2x2 subgrid, it must also leave that 2x2 subgrid. (d) Equivalued subgrid edges at

the contour level are special cases, and are drawn in their entirety. The only

exception to this rule is that constant valued 2x2 sulogrids are not drawn. This is

by convention.

Once we have an idea of the types of contour crossings possible for a 2x2

subgrid, and once we have an outline of the rules used in composing those

possibilities, we can then address the problem of forming a procedure for

assigning connectivities to the computed edge intersections. Starting with the

simplest cases of Figure 1.4. the equivalued edge cases, we clearly see that the

connectivity generation procedure for subgrids containing such edges at the

contour level is relatively simple once those equivalued edges have been detected.

If we find that we have a Constant 2z2. we do not need to issue any coordinates

or connectivities because by convention we have decided not to draw that case.

The other two possibilities, the Contour Along One Edge. or the Contour Along

Two Edges cases, are equally as simple. The only operation necessary once such

cases have been detected is to issue coordinates and connectivities corresponding

to the detected edges.

At first glance. given the edge intersections for a 2x2 subgrid. the

connectivity generation procedure for the single contour cases of Figure 1.4 seems

quite easy. It appears as if the only operation that has to be done is to issue

coordinates and connectivities corresponding to the straight line between the two

points of edge intersectior. Such a procedure works well if we know that we have

a single contour crossing the subgrid. The only single contour crossing case for

13



Single Contour Crossings

Came 1: Contour Tangent
to the 2 x 2

Expected Picture:
Drawpoint a

Case 2: One Contour
Through Adjacent Edges

Expected Picture:
Setpoint a

Drawto b
Drawto c

b

Came 3: One Contour
Through Parallel Edges

Expected Picture:

Setpoint a
b c Drawto b

Drawto c

Case 4: Contour Across
The Diagonal

Expected Picture:

Setpoint a
Drawto b
Drawto c

Figure 14a.
All Possible Contour Crossings of a 2 x 2 Subgrid
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Double Contour Crossings

Case 5: Two Contours
Tangent to the 2 x 2

k Expected Picture:

\Drawpoint a
Drawpoint b

I\

Case 6: One Contour Tangent,

One Contour through Adjacent ELges

Expected Picture:

*\Setpoint a
Drawto
Drawto c

b Drawpoint d

-. a

Case 7: Two Contours
Through Adjacent Edges

* Expected Pict.ure:
Setpoint a
Drwto b
Drawto c

b Setpoint d
Drawto e

a Drawto f

Figure 1.4b (continued)
All Possible Contour Crossings of a 2 x 2 3ubgrid
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Squivalued Edges at the Contour Level

Case 8: Contour Along
One Edge

Expected Picture:

Setpoint a
Drawto b

a b

Case 9: Contour Along
Two Edges

Expected Picture;
Setpoint a
Drawto b
Setpoint b
Drawto c

&b

Case 10: Constant 2 x 2

Expected Picture:
None.

Figure 1.4c (continued)
All Possible Contour Crossings of a 2 x 2 Subgrid
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the Contour Tangent To The !z? case. which is an even simpler case for connectivity

generation.

It is not until we consider the two contours crossing the subgrid cases of Figure

1.4 that we realize the: potential for problems with the above single contour crossing

procedure. A procedure based only on connecting edge intersections cannot differentiate
between cases such as the Two Contours Tangent To The fzt, and the Contour Across

The Diagonal cases. There are other similar connectivity generation problems evident for

the two contours crossing cases. The Two Contours Through Adjacent Edges case has

four edge intersections. For that case. information needs to be provided to the

connectivity generation procedure that determines which of three possible intersection

pairs should be connected.

Now that we have established a background for the connectivity problem for

contour crossing of the. 2x2 subgrid. we can detail the procedure used to solve that

problem. Before we describe that algorithm, we first briefly review some of the problems

cited in the literature for two-dimensional contouring.

C. TWO-DIMENSIONAL CONTOURING PROBLEMS

The literature on two-dimensional contouring, and the use of two-dimensional

contouring for creating a contour surface display is extensive, encompassing a number of

fields iRefs. 2-51, Refs. 7-17. A thorough review of the historical development of two-

dimensional contouring algorithms and the properties of those algorithms is found in

Res. 15%. Many of the contouring algorithms presented in that study are flawed either in

that they generate an incorrect picture for some contour crossing cases, or in that they

require special handling for "problem" 2x2 subgrids. Some of the typical algorithm

problems detailed are identical to those described above. i.e. they concern degenerate

points, where there are ambiguities as to which points to connect. In all of tne

algorithms reviewed, no attempt is made to fit the special cases inside of a general

algorithmic fra'mework. This is quite evident for the subgrid having a saddle point. That

contour crossing case is handled by selecting the two lines "for which the direction

changes the least" when compared against neighboring subgrids 'Ref. 15. Again. this

requires special algorithmic resolution. None of the papers attempts to build a general

framework useful for the generation of the coordinates and drawing instructions for ar.x

2x2 subgrid. The following section describes both a data structure, the contouring tree.

and an algorithm for using that data struzture. that provide both a coherent framework

for 2x2 subgrid contouring, and a comprehensive resolution to the 2x2 subgrid crossing

problem.
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(4) (3)
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40 60 30
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Figure 1.5a
Sample Contouring Tree for a 2 x 2 Snbgrid
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Tree Rooted At Value 150.00

__ z DW_ _X y I Z

2.9091 2.0000 1.0000 1
2.833 2.1667 1.0000 0

3.0000 2.5000 1.0000 0

E. 3.0000 1.0000 1
.25. ) 2.75M 1.0000 0

[2.0000 2.8533 1.0000 01

Tree Rooted At Value 150.00

Level 100
X Y Z D

2.4545 2.0000 1.0000
2.3125 2.3125 1.0000 o
2.-0000 2.4167 01.oooo -o

Column D is the drawing commaud, ie. 1 = SETPOINT, 0 = DRAWT'O.

Figure 1.5b

Coordinates Generated for Sample 2W2 Subgrid
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Examle ontur ridwith Contours Drawn for Multiple
Contour Levels
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150 W 40
(2,2) (3,2)
(4) (3)

82.5
(2.5,1.5)

(5)

50 90

(2,1) (3,1)
(1) (2)

90 150
(3,1) (2,2)
2 2

40 825 50 825 . 40

(3,2) (2.5,1.5) (2,1) (2,1) (2.5,1.5) (3,2)
1 //0 \ 0 1 /0 0

•" /
40 50 50 40

(3,2) (2,1) (2,1) (3,2)

0 1 01

Figure 1.7a
Sample Contouring Tree for a 2 x 2 Subgrid with Saddle Point
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First Tree Rooted At Value 90.00

Level 5o
X Y Z D

3.0000 1.8000 1.0000 1
2.8824 1.8824 1.0000 0

2.00r 1.0000 1.0000 1
2.0000 i1.0000 1.0000 0

First Tree Rooted At Value 90.00
Level 100

IX IYIZIDI

no coordinatfes generated

Second Tree Rooted At Value 150.00
Level 50

X Y Z D

2.0000 1.000 0  1.0 00 0  1

2.0000 1.0000 1.0000 0

2.8824 1.8824 1.0000 1
2.9091 2.0000 1.0000 0

Second Tree Rooted At Value 150.00

Level 100

x Y Z_ _ D

2.0000 1.5000 1.0000 1

23704 1.6296 1.0000 0

2.4545 2.0 1.000 0

Column D is the drawing command, ie. 1 = SETPOINT, 0 = DRAWTO.

Figure 1.7b

Coordinates Generated for Sample 2 x 2 Subgrid with Saddle Poirt
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D. THE CONTOURING TREE

A contouring tree is a data structure that represents the edge value

relationships of a 2x2 subgrid in a form that permits. the rapid generation of the

contour display for any contomr level contained within the represented subgrid

(see Figure 1.5), The formulation of the contouring tree is based upon the

observation that for any two-dimensional grid ; continuous series of contour

displays can be created for contour levels in the range of the minimum and

maximum grid values (see Figure 1.6, and [Refs. 1-51.

The use of the contouring tree is outlined best with an example of a small

two-dimensional grid. Figures 1.2 and 1.3 depict the contours generated for

contour level 50 and 100. The contours at level 100 are closed contours, forming

simple, connected loops. The contours at level 50 are open contours. Figures 1.5

and 1.7 present the contouring trees created for two 2x2 subgrids of the 4x5

plane. The edges of the contouring trees correspond to the directed, downhill

edges inscribed on the 2x2 subgrids of the figures. There are eight directed edges

on each subgrid, four for the boundary edges and four for the edges to the

subgrid's center point. The value used for the center point is the average of the

four values comprising the corners of the 2x2 subgrid. (A reference as to the

usefulness cf the center point average value in generating smooth contours is

found in [Ref. 15].) The edges of the contouring trees are ordered, maintaining

the same counterclockwise ordering as in the original subgrids. A "1" under a

node indicates that a Setpoint display command should be generated for any

coordinate that is created along an edge that has that connectivity on its lower

valued node. A "0" indicates a Drawto display comminnd in a similar fashion

and a "2" indicates a Drawpoint.

Display generation from a contouring tree is accomplished by performing a

pre-order traversal of that contouring tree, producing a coordinate and drawing

instruction whenever the desired contour level is foand to be within the range of

an edge of the contouring tree. A pre-order traversal visits the root. the left

subtree, the middle subtree, and then the right subtree. An edge's range is

defined to be the set of values between those associated with the nodes on either

23



"end of the edge. More precisely, we say a contour level is within an edge if the

following condition holds:

lowernode'svalue <= contour level < highernode'svalue

For example, in Figure 1.5a at contour level 100, we issue coordinates and

drawing instructions for the edges (2,2)-(3,2), (2,2)-(2.5,2.5), and (2,2)-(2,3). The

drawing instruction issued for each of these edges is again the one associated with

the lower valued node of the edge. The coordinate for each of these edges is

generated by a linear interpolation of the edge's endpoint coordinates according

to the decrease in contour level along the edge. The coordinates and drawing

instructions generated for the contouring trees of Figures 1.5a and 1.7a are

represented in Figures 1.5b and 1.7b.

There are some subtleties not evident from the above that are best detailed

using a pseudocode description of the traversal algorithm. Figure 1.8 depicts the

traversal procedure for the contouring tree assuming a particular data

organization. The notation is quite standard. The pointers to the descendent
nodes of NODE are LEFT(NODE), MIDDLE(NODE), and RIGHT(NODE). For

each node of the contouring tree, there are three pieces of information: the value

associated with the node, VALUE(NODE), the coordinate associated with the

node, XYZ(NODE),and the connectivity associated with the node,

CONN(NODE).

The generation of coordinates and drawing instructions from a contouring

tree be*,gns with routine CONTOUR SUBGRID of Figure 1.8. That routine

receives a pointer to the root node of the contouring tree. It then starts the

traversal by calling routine VISIT with that root node. Routine VISIT checks to

see if the edge defined by the passed in node and that node's ancestor, NODE

and ANCESTOR. contains the contour level. If the edge does contain the contour

level, the edge intersection coordinate is computed using linear interpolation and

issued to the display along with the connectivity associated with that node.

CONN(NODE). If we issue a coordinate and connectivity for a node. we need to

check the subtree under that node for equivalued edges. If an equivalued edge at

the contour level is found, a coordinate and drawing instruction pair are issued

for that equivalued edge (routine VISITSUBTREE). Once a coordinate and

24



Contouring Tree Description

Pointers to descendent nodes:

LEFT(NODE)
MIDDLE(NODE)
RIGHT(NODE)

Values associated with each node:

VALUE(NODE): grid value
XYZ(NODE): coordinate of that grid value.
CONN(NODE): drawing instruction.

procedure CONTOURSUBGRID(ROOT)

VISIT(ROOT.ROOT) #begin the traversal of the pointed at
$ contouring tree.

end.

Procedure VISIT(NODE, ANCESTOR)

if (NODE == NULL){
return

if((VALUE(NODE) <= CONTOURLEVEL < VALUE(ANCESTOR))
OR

(VALUE(NODE)==CONTOURLEVEL AND NODE==ANCESTOR))

#Edge contains the contour level.

Issue a coordinate computed via linear interpolation
along the edge.

Issue CONN(NODE) as the drawing instruction.

Figure 1.8

*g Pseadocode of the Traversal Algorithm for the Contouring Tree
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Check subtrees of this node for equivalued edges.
ISIT SUBTREE(LEFT (NODE ).NODE)

VISIT-SUBTREE MIDDLE (NODE),NODE)
VISIT-SUBTREE(RIGHT(NODE),NODE)

return # no need to examine the subtree further.

} # endif coordinates were generated for an edge.

VISIT (LEFT (NODE NODE )# visit left subtree.
VISIT(MIDDLE NODE),NODE) # visit middle subtree.
VISIT (RIGHT(NODE),N ODE) # visit right subtree.

return

end

Procedure VISIT__SUBTREE(SUBNODE,SUBANCESTOR)

if(SUBNODE == NULL)

return

if(VALUE(SUBNODE) == CONTOUR LEVEL)

Issue coordinates for the equivalued edge.
Setpoint on XYZI( SUBANCESTOR).
Drawto XYZ(SUBNODE).

V

VISIT SUBTREE LEFT(SUBNODE) SUBNODE)
VISIT-SUBTREE MIDDL U BNODE SUBNOD )
VISIT-UBTREE RIGHT(SUBNODE),"TJBNODE)

return

end

Figure 1.8 (continued)

Pseudocode of the Traversal Algorithm for the Contouring Tree
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drawing instruction pair have been issued for an edge, and once the subtree

beneath that edge has been investigated for equivalued edges, further traversal of

that subtree is terminated. If an edge is found not to contain the contour level.

the traversal continues as depicted at the bottom of routine VISIT.

The pre-order traversal procedure described above generates the coordinates

and drawing instructions for the part of the 2x2 subgrid the contouring tree

represents. To generate the coordinates for a larger two-dimensional grid, we

generate the contouring trees for each 2x2 subgrid of that grid and then apply

the traversal procedure to those trees. We note here that no ordering is required

in the generation of coordinates for the 2x2 subgrids.

E. PROBLEMS WITH THE 2X2 SUBGRID ALGORITHM

Having presented the use of the contouring tree, we must look back and

discuss its capabilities and limitations. The initial impression is that the

contouring tree provide,,, a nice, uniform framework for generating the coordinates

and drawing instructions appropriate to the 2x2 subgrid. The algorithm also

takes care of the difficult two contours crossing case for the 2x2 subgrid. The

algorithm correctly handles subgrids containing equivalued lines at the contour

level. The algorithm aiso handles subgrids containing a single grid point at the

contour level.

The core problems with this algorithm all concern issues of picture efficiency.

Since the display gene.'ated for each 2x2 subgrid is generated independently of

any neighboring 2x2 subgrids, equivalued lines at the contour level on the border

of a subgrid will be duplicated. A similar problem occurs for subgrid corner

values that equal the contour level. If we display either of the above cases on a

calligraphic display device, we wil! see a bright line for the equivalued edge. and

a bright point for the grid value equal to the contour level. Another problem. also

due to the independent computation of each 2x2 subgrid. is that no ordering is

provided for coordinates that come out of this algorithm. For calligraphic

dispiays. this is a problem because for such de--ices electron beam movement is

expensive. A contour display that causes the maximum movement of the electron

beam every other subgrid greatly decreases the vector capability of the

calligraphic display device.
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IL THE NEW LARGE CONTOURING TREE ALGORITHM

The 2x2 Subgrid Algorithm builds a general framework useful for the

generation of the coordinates and drawing instructions for any 2x2 subgrid. But

as describei above, there is a picture efficie._.v problem with this algorithm, i.e.

edge duplication and vector ordering problems. We have developed a new

algorithm, called the Large Contouring Tree Algorithm, that solves these

problems.

A. OVERVIEW OF THE NEW ALGORITHM

The new algorithm generates contours for two-dimensional, rectangular grids,

i.e. grids composed of multiple 2x2 subgrids. In this chapter, we use a 3x3 grid

ior our examples of the component parts of the algorithm (see Figure 2.1). This

"grid is a portion of the grid shown in Figure 1.2.

The input data to the Large Contouring Tree Algorithm is the size of the

grid, the density values in the grid, and the contour level. The output of the

algorithm is the set of the coordinates and drawing instructions representing the

chosen contour level. Figure 2.2 shows the contours generated for the sample

subgrid of Figure 2.1 for contour levels 50 and 100.

To generate contours, the Large Contouring Tree Algorithm goes through the

following steps. The first step of the algorithm is to calculate the density values
*of the center points of each 2x2 subgrid of the larger grid. (A reference as to the

usefulness of the center point of average value in generating smooth contours is

found in [Ref. Ic].) Figure 2.3 sho*ws the sample grid with the calculated average

density values for the center points on the grid.

The second step is the creation of the directed graph from the grid 1ising the

density values. We create the directed graph by assigning a direction to each

edge of :he grid based upon the values assigned to each node of the grid.

Equivalued edges are assigned an arbitrary direction.
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Figure 2.1

The Sample Grid Taken From The Grid Of Figure 1.2
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Figure 2.2a

The Contours Generated For The Sample Grid At Contour Level 50
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Figure 2.2b
S~The Contours Generated For The Sample Grid At Contour Level 100
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The next step is the creition of the in-degree matrix of the directed graph.

The in-degree matrix of a directed grapn is defined in [Ref. 18]. We provide more

detail about in-degree matrix creation in the following. section.

We create a contouring tree for each node of the in-degree matriy that has

the property in-degree(ii)-0, i.e. for each node lacking incoming edges.

Conwouring tree creation is accomplished in a manner similar to that used for the

2x2 subgrid, i.e. we construct directed trees from the information contained in

the in-degree matrix, making sure that the order of edge attachment in the tree

corresponds to the order in the directed graph. The difference between the 2x2

subgrid algorithm and the large contouring tree algorithm is that the tree

construction process of the large contouring tree algorithm is not limited to a

single 2---2 subgrid but rather is allowed to extend to multiple subgrids.

After contouring tree creation for the two-dimensional grid, the next step in

the tree construction process is to associate drawing commands with each of the

trees' nodes. Drawing conmnands are placed in the contouring tree to indicate

when a line enters the region represented by the contouring tree either from a

neighboring subgrid, or from a location off of the grid. We insert the drawing

commands by way of a pre-order traversal of the contouring tree, placing a

setpoint command on each node that is a new lowest value for the tree. There

are other more detailed considerations with respect to drawing command

placement. These are discussed below.

Once tbe contouring tree for a two-dimensional grid has been constructed.

and once the drawing commands have been placed into that structure, the

contouring tree is ready for use in generating a contour display. Display

generation is accomplished by performing a pre-order traversal of the contouring

tree. producing a coordinate "nd drawing instruction whenever the desired

contour level is found to be within the range of on edge of the contouring tree. If

an equivalued edge at the contour level is found, a coordinate and drawing

instruction pair are issued for that equivalued edge.
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B. CONTOURING TREE CREATION

Contouring tree construction is best understood if we describe that procedure

in graph theoretic terms. The first step in that procedure is to create all of the

nodes that take part in the directed graph. This set of nodes consists of all grid

crossing points and thr; set of nodes corresponding to the center points of average

value for each individual 2x2 subgrid of the larger two-dimensional grid. Figure

2.3 shows the sample 3x3 grid with the center points of average value labeled.

Once we have the collection of nodes for the directed graph, we then need to

assign directed edges between those nodes. Edges are directed from nodes of high

value towards nodes of low value. The edge connections between each node

correspond to their connection in the original two-dimensional grid. Equivalued

edges are assigned directions arbitrarily. For example, the grid in Figure 2.3 has

thirteen nodes in its directed graph, counting the grid crossing nodes and the

center points of average value. Figure 2.4 shows this same grid with arrowheads

indicating edge directions.

Once we have the directed graph corresponding to the two-dimensional grid.

the question then becomes, how do we obtain the contouring tree, or trees from

the directed graph? We can put this question in terms of graph theory if we

notice that a contouring tree it a directed tree. The problem ther, becomes one of

obteining the directed tree, or trees, from the directed graph such that the order

of edge attachment in the tree corresponda to the order in the directed graph.

From graph theory, we have the requirement that a directed tree has the ;n-

degree of its root node equal to zero, and the in-degree of e;-ery other node equal

to one [R1f. 18]. To examine the in-degree of each node of the directed graph, we

must construct the in-degree matrix D for that graph. The in-degree matrix D of

a directed graph G is defined in [Ref. 18] as:

Dji4j = in-diegree(i), if i=j
D ij = -k, if i is not equal to j.

where k is the number of
edges in G from i to j
(i.e., -1 for all our graphs).

Figure 2.6 shows the in-degree matrix for the directed graph of Figure 2.4.

The node ni'mbering scheme of Figure 2.5 is used for the in-degree matrix of

Figure 2.6. From Figure 2.6. we note that the roots of the contouring trees are
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The Directed Graph Created From The Sample Grid
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Figure 2.5

The Numbers On The Directed Graph Represent The Node Number

Associated With The Node In The In-Degree Matrix
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recognizable from the in-degree matrix as D(i,i)=0. This matches the first part of

the directed tree requirement. For multiple roots (in-degree(v)=0 for more than

one node), we create as many trees as the number of roots in the in-degree

matrix. For each diagonal entry D(i,i)=n, where n > 1, we create n-1 duplicates

of that node, for a total of n, taking care to copy the appropriate values,

coordinates, etc. We then reassign the original edges that went to the single

node, such that each edge receives its own copy of the duplicated node.

1. In-Degree Matrix Creation

The first problem we encounter once we have a two-dimensional, regular

grid, and its cc nter nodes of average value, is how to create the in-degree matrix.

We solv'e that problem by enumerating all possible configurations of edges that

could form such a grid. We call each of these configurations, or cases, situations.

For example, Situation 4 is the name of the case for the node in the center of a

2x2 subgrid. We locate and classify all of the nodes and edges of the original grid

into one of ten possible situations. We have a number/name and characteristic

assigned to each situation. Some situations are comprised of only one node in the

grid, and some include multiple nodes. Each node in the grid belongs to one of

these situations. For example, the node in the upper righthand corner of Fi7ure

2.7 is a Situation 10 grouping, i.e. it is comprised of the upper righthand node of

the two-dimensional, grid. The complete set of situations are defined as follows.

Situation 1 is the name of the case for the node in the lower lefthand

corner of the grid. Situation 3 is the name of the case for the node in the lower
righthand corner of the grid. Situation 8 is the name of the case for the node in

the upper lefthand corner, and Situation 10 is the name of the case for the node

in the upper rigl.thand corner. Situation 4 is the name of the case for the node in

the center of a 2x2 subgrid. Figure 2.7 shows a 2x2 subgrid which is a

combination of situations 1,3.4,8, and 10.

All nodes on the perimeter grid line with the lowest valued Y coordinate.

except for the first and last nodes, are named Situation 2 nodes. All nodes on the

perimeter grid line with the highest valued Y coordinate, except for the first and

last nodes, are named Situation 9 nodes. All nodes on the perimeter grid line with

the lowest valued X coordinate, except for the first and last nodes, are named
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D(ij) 1 2 5 6 7 - 1 11 12 is

1 -1 1 -1 "oT-0'F0±1 o 0
_ 2 0 0 0 - 1 0. :0 0 0o
3 0 -1 2 -1 0 0 -1 -I -1 0 0 0 -1

0 0 0 0 5 o0 0 1 0 0 0 o 0
-1 -1 -1 1 0 0 ' 0 0 0 )"3 0 0

;-1 0 0 0 0 0 0
6 TA T T T'0P~ 0 0 0 0: -
7 0 0 0 0 0 0o4 01 0 0 0 -1 0
8 0 0 0 0 0 -1 -1 2 0 0 0 0 0
9 0 0I 0 010 i0 0 0 0 0 -1

o10 00 0 -1 of 0 o 0o -1 0 -1 0 0
11 0 0 -0 -1 0 0 0 0o-11 0 1 0 0o
12 0 0 0 0 o0o o 0  3 0
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S'.• " Figure 2.6

Sample In-Degree Matuix For The Directed Graph Of Figure 2.3
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Figure 2.7
"Grid Nodes Are Named By Their Situation Number

Situation 5 nodes. All nodes on the perimeter grid line with the highest valued X

coordinate, except for the first and last nodes, are named Situation 7 nodes.

Non-perimeter nodes that occur at crossing points of the two-dimensional grid,

i.e. non-center point of average value nodes, are named SituaTion 6 nodes. Figure

2.8 shows all ten possible grid node name situations. FigurT 2.9 is a summary of
those situation.s.

Once wee have a mechanism for naming each of the possible node
uraions for a two-dimensional grid, we hn need to provide a node

visitation naming scheme that allows the as-ociation of a node in the two-

dimensional grid with its record in the in-degree matrix. \Ve call this naming

scheme the Visiting Node Order. The numbers on Figure 2.10 show this

visiting node order for the example grid. We begin by visiting the first n.ode (1.1),

then the second node (2.1), and then the other nodes respectively (2.2). (1.2).
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Figure 2.8
All Ten Possible Grid Node Name Situations

(1.5.1.5). etc. What we mean here is that the first node (1.1) is associated with

the node number 1 in the in-degree matrix. The second node (2.1) in the grid is

associated with the node number 2 in the in-degree matrix. The third node (2.2)

is associated with the node number 3 in the in-degree matrix, and so on.

According to our rule. we visit every node in the 2x2 subgrid before going onto

the next 2x2 subgrid. The same rule is then applied *o the next 2x2 subgrid.

Alread&." visited nodes in the 2x2 subgrid are skipped. The rest of theni are visited

in counterclockwise order. If we exhaust all 2x2 subgrids in the X dirertion. ihen

the next 2x2 suligrid to be visited is on top of the 2x2 subgrid which we visited

first. Let's say that we are on the node number 8 of Figurf 2.10. The next 2x2

subgrid to be visited is bounded by nodes (1.2). (2.2). (2,3). and (1.3). According

to our rule. the first node we should visit is nod., (i.c). then node (2.2). But these

nodes have been already visited. Given the rule above. we -.kip these nodes and
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The Definition Of Situations

SITUATION 1 is the name of the case for the node in the lower lefthand

* comer of the grid.

SITUATION 2 is the name of the case for all nodes on the perimeter grid line

with the lowest valued Y coordinate, except for the first and last nodes.

,ITUATION 3 is the name of the case for the node in the lower righthand

corner of the grid.

SITUATION 4 is the name of the case for the node in the center of a 2x2

subgrid.

SITUATION 5 is the name of the case for all nodes on the perimeter grid line

with the lowest valued X coordinate, except for the first and last nodes.

SITUATION 6 is the name of the case for non-perimeter nodes that occur at

crossing points of the two-dimensional grid.

SITUATION 7 is the name of the case for all nodes on the perimeter grid line

with the highest valued X coordinate, except for the first and last nodes.

SITUATION 8 is the name of the case for the node in the upper lefthand

comer of the grid.

SITUATION 9 is the nam. of the case for all nodes on the perimeter grid line

with the highest valued Y coordinate, except for the first and last nodes.,

"SITUATION 10 is the name of the case for the node in the upper lefthand

corner of the grid.

Figure 2.9

SSummary of the Ten Possible Grid Node Name Sýituations
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Figure 2.10
The Visiting Node Order Of The Sample Grid

then visit nodes (2.3). (1.3). and (1.5.2.5) respectively. The procedure is to first

exhaust all 2x2 suhgrids in the X direction, then go to the 2x2 ..uhgrid (if there is

one) on top of Ile first vi.-,ted 2x2 subgrid. and then apply the same rule on the

following 2x2 -ubgrid- in the X direction. This process is repeated until there are

no more 2x2 sub-grid: to In visited in the grid.

Visiting node order is the order in which the rodes of the two-

dimensional grid and center points of average value are vi.-ited during in-degree

matrix creation. The in-degree matrix procedure works in the following fa-shion as

it steps through each node. First. the situation name for the node i- determiined.

42



The second step is to call a procedure that examines the edges attached to the

node. The procedure called is selected on the basis of the situation name for the

node. Figure 2.11 shows the pseudocode of the in-degree matrix creation

procedure. Figure 2.6 holds the in-degree matrix for the directed graph of Figure

2.4.

2. Contouring Tree Construction

In the first chapter, we described the contouring algorithm for the 2x2

subgrid. The difference between the 2x2 subgrid ,lgorithm and the large

contouring tree algorithm is that the tree construction process of the large

contouring tree algorithm is not limite-4 to a single 2x2 subgrid but rather is

allowed to extend to multiple subgrids. In this chapter, we show how to create

the large contouring trees from the in-degree matrix. This creation operation is a

"tree growth" process. We build each contouring tree by adding edges

successively, starting at the root, and then recursivwly to each descendent node.

Above, we created the directed graph from the given grid and then built

the in-degree matrix from this directed graph. The in-degree matrix and the

directed graph provide the information necessary to create the contouring tree.

The in-degree matrix reflects the direction of the edges in the directed graph. We

use this feature of the in-degree matrix d, ring the tree growth process. Before we

describe the tree growth process, it is necessary to provide some background on

how edges are related to the nodes of the grid.

As mentioned above, each node in the grid can be characterized as

belonging to one of ten situations. The number of edges in each of the ten

situations is constant. For example, situation 1 has three edges, 2 has five edges,

etc. This constancy allow, the creation of an edge list for each situation. This. in

turn. allows the assignment of a number-name to each edge. The numbers

assigned each edge represents the order used for edge addition in the tree growth

process. This edge ordering is maintained in the contouring tree. Given this

background. we then exa.-nir. in detail contouring tree creation from the in-
degree matrix.

The al._o-;i, of Figr',re 2.13 outlines the general procedure for

contouring tree construction. The first part of this pr-Gcedure is a loop that starts
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NOTE: The range of MidNum is the set of visiting node order numbers on the

node in the center of each 2x2 subgrid. The range of Xnum is the set of visiting

node order numbers for the rest of the nodes in the grid.

Procedure CREATE IN DEGREEMATRIX (XMAX,YMAX)

# XMAX and YMAX are the maximum values of X an( Y coordinate
MidNum 

<- 5
XNum <- 1

For X=1 to XMAX

For Y=1 to YMAX

If (X=I) AND(Y=1)
EVALUATE_SITUATIONI (X,Y.MidNumXNum)

Else If (X < XA AND (Y--1)

EVALUATE SITUATION 2 (X.MidNumXNum)
Else If (X =XMAX) AND (Y=__I

EVALUATE SITUATION 3 X,Y,MidNum,XNum)Else If ( X > XMAX
EVALUATE SITUATION_4 (X,YMidNumXN .)

Else If (X = 1 AND NOT Y =AX)EVAkLUATE_ SITIU 4TION__5 (X,YMdNumXNum)

Else If NOT ((X = XMAX) OR (Y =- YMAX))
EVALUATE__SITUATION__6 (X,YMidNumXNum)

Else If (X = XMAX) AND NOT (Y = YMAX)
EVALUATE__SITUATION 7 -(X,Y,,NidNumX.NIum)

Else If (X = I AND (Y = YMAX )EVAtLUA E SITUATION 8 (X,YMidNum.XNum)

SElse If (X =- XMAX) AND (Y = YMAX)

EVALUATE SITUATION 9 (X,Y.MidNumXNum)

Else EVALUATESITUATION_10 (X,YMidNum.XNum)

} # Endfor
} # Endfor

- Find the diagonal values by counting the minus one values of the
column in the in-degree matrix.

End # procedure

Figure 2.11

In Pseudocode Of Creation Of The InDegree Matrix
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Procedure EVALUATESITUATION 1 (X,Y.MidNum.XNum)

# Check all the edges connected to the node

# Check edge number 1

If (NodeDnsty(X.Y) => NodeDnsty(X+1,Y))

In-Degree(X.X+1) <- -1

else In-Degree(X+1.X) <- -1

# Check edge number 2

If (NodeDnst- 'X.Y) => NodeDnsty(XLMAX+1,Y))

In-Degree(XMidNum) <--1

else in-Degree(MidNumX) <- -1

# Check edge number 3

If (NodeDnsty(X,Y) => NodeDnsty(X,Y+1))
In-Degree(X,MidNum-1) <--1

else In-Degree(MidNum-1,X) <- -1

# Increments of MidNum and XNum

XNun Mz<- XNum + 1

If ( XMAX <> 2)

MidNum <- MidNum + 3

end # Procedure

Procedure EVALUATESITUATION_<Number> (X.Y.MidNum.XNum)

- Check all the edges connected to the node in situation<number>.

- Put the results into the InDegree Matrix. using "MidNum" and "XNum"

- Issue the next value of "MidNum"

- Issue the next value of "XNum"

End • Procedure

Figure 2.11 (continued)

Pseudocode Of Creation Of The InDegree Matrix
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Figure 2.12

Counterclockwise Edge Order For Each Situation
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Figure 2.12 (Continued)
Counterclockwise Edge Order For Each Situation
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Procedure CONSTRUCT LARGE CONTOURING TREE ( MAXSIZE)

# MAXSIZE is the maximum node number of the in-degree matrix

For i = 1 to MAX SIZE

If In.Degree(i.i) = 0 # zero value on diagonal means the root node,- {

GrowthNode <- Node(i)

Repeat
{

- Find which situation the growth node belongs to.
- Put the edges on the edge list corresponding to the
growth node inito clockwise order (see Figure 2.12).
- Push the new ordered edge list onto the stack.

Replat

- Pop one edge from the top of the stack.

Until ( Edge direction is outward from the growth node)
OR

(Stack is empty)

If ( Stack is NOT empty )

- The node on the end of the outward edge becomes
the new growth node.
- Link the new growth node to the contouring tree.

} # Endif Stack is not empty
}

Until ( Stack is empty)

- Put the root node of the tree constructed onto the tree head
pointer list.

} # Endif InDegree(i.i)=O

# Endfor For i = 1 to MAX SIZE
4

End # Procedure

Figure 2.13
Pseudocode for Constructing the Contouring Tree from the In-degree Matrix
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with a test for nodes whose in-degree is zero. When the algorithm finds such a

node, it determines its situation number. The algorithm then places the edges

corresponding to that situation onto a st&ck in clockwise, or reverse numerical,

order (see Figure 2.12).

Once the situation's edges are on the stack, the algorithm then takes one

edge at a time from the stack and determines if the edge is directed away from

the growth node. If the edge is directed away, the node on the other end of the

edge becomes the new growth node. The new growth node is linked to the tree. If

the edge is not directed away from the growth node, i.e. it is directed towards the

giowth node, that edge is discarded. The next edge on the stack is then examined

in a similar manner. This continues until either an edge directed away is found,

or until the stack is emptied. If a directed away edge is found, a new growth node

is established and the process repeats (see Figure 2.13). This process continues

until all diagonal entries of the in-degree matrix have been examined, and all

* edges have been a-lded to the contouring trees.

44 The above section outlines the main steps of the contouring tree growth

process. The following sections explain each of those steps in detail.

a. Procedure Search Path

When the contouring algorithm finds a root node in the in-degree

matrix (as shown at the top of Figure 2.13). procedure SearchPath it called (see

Figure 2.14). This procedure is the one that searches through all paths from the

root node to the other nodes of the directed graph. During this search, the

procedure links to the contouring tree any previously unvisited nodes that pass

the growth node eligibility test. The procedure finishes when all reachable nodes

have been visited A node is reachable if it can be visited from the root by way of

a directed path through previously-unvisited nodes.

During the first call of procedure SearchPath, a node corresponding

to the root node of the contouring trcz- is created. Procedure

EdgesMnSitu<Number> is then called (see Figure 2.15). The procedure called

is determined by the situation number of the root node. Procedure

EdgesInSitu<Number> has the list of edges corresponding to the situation's

number. These edges are processed by procedure EdgesInSitu< Number> by way
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Some descriptions

NODE(RowNum): the node defined by "RowNum" in the in-degree matrix
NODE(Coord): die node defined by "Coord" in the in-degree matrix
Deter: takes the zero value (0) for the root node otherwise, the one value (1I
EdxeNum: the edge number used to visit the growth node
Exist Way: true for the outward edge otherwise false
FirstCall: true if the procedure is m first call, otherwise false
LastEdge: true if the last edge on the edge list is being checked, otherwise false

Procedure SearchPath (Situation.Coord.RowNum.EdgeNum)

If there is a path from the node defined by "RowNum" to the node
defined by NIODE(Coord) in the in-degree matrix.

If (In-Degree(RowNumNNODE(Coord)) ==-1 )

# Reset the growth node to be NODE(Coord).

RowNum <- NODE(Coord)
ExistWay <- True

Else ExistWay <- False

If the growth node has already been visited and the edge is
directed away from the growth node.

If ((NODE(RowNum) has already been visited ) AND ( ExistWay))

- Link the NODE(RowNum) to the contouring tree

- Link the one or two edge(s) immediately adjacent to the edge
defined by EdgeNum (see Figure 2.17)

Else

- Link the new growth node to the contouring tree. dependirig upon
the values of "FirstCall". "LastEdge" and "ExistWay (see Figure
2.16)

If (ExistWay ) OR ( FirstCall)

- Issue that the node defined by NODE(Coord) has been visited

- Assign zero value to "Deter" if the growth node is the root
node. otherwise one value (1) is assigned.

- Find the edge number of the edge used to visit the growth node
and then assign that number to "EdgeNum"

Figure 2.14

Pseudocode Of Procedure Search Path
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4 Push all the edges on the edge list of situation 1 onto a stack
by calling procedure EdgesInSitulI

If( Situation == 1)
EdgesInSitul (Deter.EdgeNum.Coord.RowNum)

P ush all the edges on the edge list of situation 2 onto a stack
by calling procedure Edgesl-Situ_2

Else'if I Situation == 2)
EdgesIriSitu2 (Deter,EdgeNum.Coord,RowNum)

Push all the edges or the edge list of situation 3 onto a stack
by calling procedure EdgednSitu 3

Else if ( Situation == 3
EdgesInSitu3(Deter,tdgeNum,Coord,RowNum)

S..........°

Push all the edges on the edge list of situation 9 onto a stack
by calling procedure EdgeslnfSitu_9

Else if ( Situation == 9 6 R
EdgesinSitu_9(Deter,E dgcNun.Coord,RowNum)

Push all the edges on the edge list of situation 10 onto a stack
by calling procedure EdgesIfiSitul10

Else EdgesInSitu IO(Deter.EdgeNum,Coord,RcwNum)

}# if (ExistWay) OR ....
} # Endif Else

End # procedure

Figure 2.14 (continued)

Pseudocode Of Procedure Search Path
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SSample code for situation 1.

Procedure EdgesInSitu I (Deter,EdgeNum,X,YRowNum)

# Push all the edges on the edge list of situation I onto a stack.

For i = 1 to ( Deter + 2)

"Deter" takes value one (I) if the growth node is not the root node,
otherwise it takes zero value.

Put the edges on the edge list of situation 1
in a counterclockwise order.

If ( EdgeNum == 3)
EdgeNum <- 1

Else EdgeNum <- EdgeNum + 1

# If the last edge on the edge list of situation 1 is checked.

if ( i ==-(Deter + 2))
Last dge <- true

#Check edge number 1 of situation 1.

If( EdgeNum == 1)

SIf the maximum value of X coordinate is two, then edge number 1
goes to edge number 3 of situation 3, otherwise it goes to cdge
number 2of situation 5.

If ( (XMAX == 2)
SearchPath( 3, X+1, Y, NODE(X,Y), 3)

Else SearchPath( 2, X+1 Y NODE(X,Y), 5)
} #end if( EdgeNum'== 1'

# Check edge number 2 of situation 1.

If ( EdgeNum == 2)

Edge number 2 of situation 1 always goes to edge number 1 of
situation 4.

SearchPath( 4, XMAX+X, Y, NODE(X,Y), 1)

Figure 2.15

Pseudocode of the Algorithm of the Tree Growth Process
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# Check edge number 3 of situation 1.

If( EdgeNum == 3)

* If the maximum value of Y coordinate is two, then edge number 3
* of situation 1 goes to edge number 1 of situation 8, otherwise

it goes to edge number 1 of situation 5 (se Figure 2.12).

If( YMAX == 2 )
SearchPath( 8, X, Y+I, NODE(X,Y), 1)

Else SearchPath( 5, X, Y+1, NODE(X,Y), 1)
S} #end if (EdgeNumn==3)E Endfor for i=1 ...

End # Procedure

# General algorithm for all situations

Procedure EdgeslnSitu_<Num> (Deter,EdgeNum,Coord,RowNum)

$ MAXEDGE is the maximum number of edges be!onging to the node
corresponding to situation <Num>

# Push all the edges of situation <Number> onto a stack.
For i = 1 to (Deter + (MAXEDGE-1)
{

SPut the edges on the list into a counterclockwise order

If ( EdgeNum == MAXEDGE)
EdgeNum <-- 1

Else EdgeNum <-- EdgeNum + 1

# Take one edge fror, the top of the stack and then check it.

# if the edge number taken from the stack is one.

If (EdgeNum == 1)

- Find which situation edge number 1 must be connected to and 'ien
assign that situation number to Situation"

- Assign the new value to "Coord" for the coordinate of the growth
node

- Find the edge number of the edge used to visit the growth node
and then assign that edge number to "EdgeNum".

Assign the new value to "RowNum" to show the node in the in-
degree matrix associated with the previous growth node in the grid

Figure 2.15 (continued)

Pseudocode of the Algorithm of the Tree Growth Process
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# Call procedure SearchPath for finding all the paths from edge

number Iof situation <Number> to other nodes in the grid.

SearchPath (Situation,Coord,RowNum,EdgeNum)

# $ end if (EdgeNum == 1)

# if the edge number taken from the stack is two.

Ise If (EdgeNum == 2)

- Same above process is repeated for edge number 2
}

# if the edge number taken from the stack is three.

Else if (EdgeNum == 3){

- Same above process is repeated for edge number 3

..............

..............

..............

o.°o.o........

# if the edge number taken from the stack is MAXEDGE.

Else if (EdgeNum == MAXEDGE)

- Same above process is repeated for edge number MAXEDGE

# end for i1

End # Procedure

Figure 2.15 (continued)

Pseudocode of the Algorithm of the Tree Growth Process
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of calL- to procedure SearchPath. SearchPath determines each edge's direction

with respect to the growth node. If the edge is directed away from the growth

node, then the node on the end of that edge becomes the new growth node.

In the above, we note that procedures SearchPath and

EdgesInSitu<Number> call each other recursively. Procedure

EdgesinSitu<Number> pushes the ordered edges onto a stack. Procedure

SearchPath takes an edge from the top of that stack and then checks if that edge

is directed away from the growth node. This process repeats until the stack is

empty of edges. At that point the contouring tree gro, 1i process is complete.

The procedure used to link a new growth node to the contouring

tree, GrowingTree, is shown in Figure 2 16. The notation we use in that

procedure is quite standard. CHILD(NODE) represents the child pointer of the

node. SIBLING(NODE) the sibling pointer of the node and PREJ)(NODE)

the predecessor node in the contouring tree.

Procedure. SearchPath always calls procedure GrowingTree.

Growing s. c is the procedure that links new growth nodes to the contouring

"tree. In the first call, GrowingTree creates a node with the necessary data and

then assigns this node to be the root node of the tree. The next gr:wth nodes are

linked to the field CHILD(NODE) of the root node. Each new growth node is

linked to the field CHILD(NODE) of the previous growth node. This continues-r
until the last edge on the list associated with the growth node has been traversed

and there are no further nodes reachable from the growth rode. When this

condition occurs. procedure GrowingTree resets the growth node to be the closest

to the right ,ibling node in the tree. The next growth node is linked to the field

SIBLING(NODE) of that node. The next growth node is linked to the field

CHILD(NODE) of the new!y linked node. This tree growth process is repeated

until all the edges belonging to the root node in the directed graph are exhausted.

If procedure SearchPath runs into a node which has alread% been

visited during the contouring tree growth process, then SearchPath calls

procedure SharedEdge. (see Figure 2.17). SharedEdge processes the edges
immediately adjacent tot the edge used to visit the growth node. If the adjacent

ý-dges are directed away from the growth node. then the nodes on "he ends of the
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Procedure GrowingTree (Coord.ExistWay.LastEdge)

If(FirstCall

- Create the new growth node for the tree
-Put the necessary data on this node

-Assign this node to be the root node of the tree
Issue that the next growth node will oe linked to field

CHILD(NODE)

Else}If ( The edge is directed away from the growth node)
AND
( LastEdge)

- Link the growth node to the tree
Reset the growth node to be the closest to the right sibling node in

the tree.

Ilse If ( ExistWay){

# Growth node was moved over to the closest right sibling node.

If (Declared field to be linked is SIBLING(NODE)){
- Link the growth node to the field SIBLING(NODE)

Issue that the next growth node will bi linked to the field
CHILD(NODE)

4.Ilse.~4I {
- Continue linking the new growth node to the same previous
field (It can be the field CHILD(NODE) or SIBLING(NO7DE)).

Else If (( The edge is NOT directed away from the growth node)
AND

LastEdge))

- Find the immediate father node in the tree.
- Issue that the next growth node will be linked to the field
SIBLING(NODE)

End # GrowingTree

Figure 2.16

Pseudocode Of Algorithm Linking The Growth Nodes To The Contouring Tree
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outward edges are linked to the tree, as children of the growth node. Edges

directed towards the growth node are ignored.

When procedure SearchPath reaches the empty stack condition, the

contouring tree growth process is over. This same process is repeated for all root
"ncdes in the directed graph. Figure 2.18 illustrates the two contouring trees

created from the in-degree matrix of Figure 2.6.

3. Drawing Command PL,•cement

Drawing commands are placed in the contouring tree to indicate when a

line enters the region represented by the contouring tree either from a

neighboring subgrid or from a location off of the grid. If we look at the structure
of the contouring tree and consider that during the traversal, the edges are

examined in a counterclockwise, and downward ordering from the root, we note

that we need to place setpoint drawing commands on the lower valued node of

each edge that preserts a new lowest value for the tree. ( Note that the drawing
command Setpoint indicates to the display device that it should move its

"drawing instrument", i.e. electron beam. pen. etc.. in a non-drawing mode to the
specified location, and that it should then place that drawing instrument into a

drawing mode. Drawto indicates to the display device that it should move its
drawing ;nstrument in a drawing mode to the specified location. Drawpoint

indicates to the display device that it should move its drawing instrument in a

non-drawing mode to the specified location, and that it should then turn that

drawing instrument on for the space of a single point.) We insert these drawing

commands by way of a pre-order traversal of the directed tree. placing a setpoint

command on each node that is a new lowest value for the tree. This drawing

command placement strategy is based upon the fact that if we have a contour

level for which we desire a picture. the first drawing command we generate for

a~ly 'ontouring tree is a setpoint. Although fairly effective. thii proc-dure does

not provide a complete solution to drawing command inmern ion.

C. DRAWING COMMAND PLACEMENT PROBLEMS

1. Split Edge Problem

The drawing command placement strategy outlined above does not
provide a complete solution to drawing command insertion. Some neighboring
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Procedure SharedNode (Situation.Coord.RowNum.EdgeNum)

If( Situation == 1)
# If we are looking at edge number 1 ol situation 1.

If (EdgeNum ==1)

- Find the coordinates of the edges adjacent to edge number
1 in situation 1 (see Figure 2.12).

# if we are looking at edge number ? of situation 1.

Else If ( EdgeNum ==2){
- Find the coordinates of the edges adjacent to edge number
"2 in situation 1 (see Figure 2.12).

Else (Do the same above process for EdgeNuLm = 3)
Else If (Situation == 2 )

If we are looking at edge number 1 of situation 2.

If( EdgeNum -- )

Find the coordinates of the edges adjacent to edge number
I in situation 2 (see- Figure 2.12).

# If we are looking at edge number 2 of situation 2.

Else If (EdgeNum ==2){
Find the coordinates of the edges adjacent to edge number

2 in situation 2 (see Figure 2.12).
S........... .....

}5
Else If( EdgeNum -=5 )

- Find the coordinates of the edges adjacent to edge number
5 in situation 2 (see Figure 2.12).

Else If Situation == 3)

- Find the coordinates of the edges adjacent to the edge number
defined by "EdgeNum" in situation 3 (as above).

Else If Situation == 10

.

# ChecA whether the adjacent edges are directed away froin the growth node.

If ( The adjacent edge(s) are directed away fromi the growth node

- Link the adjacent edge(s) to the contouring tree
End pr~ocedure :l-,ared.%ode

Fig ure 2.17Pseudocode Of Algorith,-dn valuating Already Visited Nodes
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edges in the contouring tree, i.e. edges shariag an ancestor node, have a "split"

between them, i.e. the edges are not immediate counterclockwise neighbors in the

original grid. In this case, we must indicate the discontinuity in the contouring

tree. We register the disc.ontinuity on the lower valued node oi the edge where

the discontinuity occurs. For example, in Figure 1.3a the edges (3.3)-(3.2) and

(3,3)-(2,3) are neighbors in the contouring tree but are not immediate neighbors

in the original grid. We indicate this split by placing a "1" on the lower valued

node of edge (3,3)-(2,3).

In order to recognize the nodes that require a drawing command

indicating a split edge in the contouring tree, we must take care of all possible

places where split edges occur in the larger grid. The algorithm of Figure 2.19

solves this problem.

The main idea behind this algorithm comes from the definition of the

split edge preblem. During drawing command placement, the father node pointer

and his child node pointer are given to procedure SplitEdgeControl. This

procedure determines to which situation the father node belongs. The edge

number between the father node and the child node is then fc-_nd. When the

edge number is known. the edge immediately adjacent to that edge in the grid is

easily determined. For the continuous case. i.e. non-split edge case. this edge also

exists in the cont,_.:-ig tree. The algorithm finds the edge number between the

father node and tlhe next child node in the contouring tree. The adjacent edge

number in the tree is rompared with the edge number in the grid. If these two

edges are the same. it means that there is no split edge problem If the edges are

different, a split edge problem exists. We put a setpoint indicator on the lower

valued node Gf the split edge. This procedure also takes care of edges lacking an

adjacent edge in counterclockwise order. For example. edge number 3 in situation

1 ha- no adjacent edge in counterclockwise order. In this case. if there is another

child node in the contouring tree. a split edge condition exists.

2. Edge Duplication Problem

The core problems with the 2x2 subgrid algorithm all concern is'iue, of

picture efficiency. Since the display generated for each 2x2 subgrid i- generated

independently of any neighboring 2x2 subgrids. equivalued lineq at the contour
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Procedure SplitEdgeControl (FATHER(NODE).CHILD/SIBLING(NODE))

# "/" means "OR"

SFind the edge number of the edge in the grid and the edge number in the
tree construction.

- Find to which situation FATHER(NODE) belongs.
- Find the edge number between FATHER(NODE) and

CHILD/SIBLLNG(NODE) in the tree construction.

Find the edge number immediately adjacent to that edge number in the
grid.

- Find the next SIBLING(NODE) ..next child of the same father-

- Find the edge number between FATHER(NODE) and SIBLING(NODE)
in the tree construction.

SDetermine if there is a split edge.

If (The adjacent edge number in the tree construction is NOT the same
as the adjacent edge number in the grid) # Split Edge Exists

- Put a Setpoint command in node.

}
Else f No Split Edge

) {

- Put a Drawto command in node.

End # SplitEdgeControl

Figure 2.19
Pseudocode Of Algorithm Solving The Split Edge Problem

63

..94



level on the border of a 2x2 subgrid are duplicated. A similar problem occurs for

subgrid corner values that equal the contour level. If we display either of the

above cases on a calligraphic display device, we see a bright line for- the

equivalued edge, and a bright point for the grid value equal to the contour level.

Another problem, also due to the independent computation of each 2x2 subgrid is

that no ordering is provided for coordinates that come out of this algorithm.

These are the problems with the 2x2 subgrid algorithm.

In the Large Contouring Tree Algorithm, we eliminate contour line

duplications in two ways. First, during the tree growth process we don't allow

repeated subtrees to be linked to the contouring tree. Repeated subtrees cause

the duplication of contour lines during the trayersal process. For this reason,

when we visit any node more than once during the tree growth process. we take

into account only edges immediately adjacent to the edge used to visit the

growth node. If these adjacent edges are directed away from the growth node,

"then we link those adjacent edges to the tree. Edges directed towards the growth

node are ignored. Figure 2.20 shows how to handle a node that has been visited
more than once.

The second procedure we use to eliminate contour line duplications is to

keep track of the coordinates of equivalued edges at the contour level in order to

prevent the equivalued edges from appearing more than once. Before outputing

"the coordinate and drawing command of an equivalued edge. we check to

determine if there is another equivalued edge with the same coordinates as the

one already on hand. If there is. we discard that second set of coordinates and

drawing instructions.

3. Decision On Closed Contour Lines

The contours at level 100 on Figure 1.3 are closed contours. forming

"imple. connected loops. The contours at level 50 on Figure 1.2 are open

contours. In the creation of the closed contours. we can't complete the connected

loops by traversing contouring tree. The contour lines between the starting point

and the ending point stay open. We need a procedure that determines when

'-N contour lines should be closed.
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ASSUMPTION: the growth node is at the center of this picture. The node is a
situation 6 node.

4 3 2

6 7 8

t-..

CASE 1: the first visit is via edge number 6
Edge numbers to be linked are 7.2.4 and 5

CASE 2: the second visit is via edge number 8
Edge number to be linkcd is 7

CASE 3: the third visit is via edge number 1
Edge number to be linked is 2

CASE 4: the fourth visit is via edge number 3
Edge numbers to be linked are 4 and 2

Figure 2.20
Elimination Of Repeated Subtrev During The Tree (;rowtlh Proces.,

Two conditions must occur for the closed con-iours deci-ion. Fir',t. the

root node of the contouring tree must ibelong to sit.ation 6. Situation 6 is the

only situation with a complete set of adjacent edges that is eligible to serve as the

'* root of a contouring tree. The second condition is that the starting and the

ending coordinates of the concerned contour cannot be on the border lines of the
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grid. If the coordinates are on the border lines (outermost lines) of the grid, then

we don't close the contour.

D. DISPLAY GENERATION

Display generation frnom a contouring tree is accomplished by performing a

pre-order traversal of that contouring tree, producing a coordinate and drawing

instruction whenever the desired contour level is found to be within the range of

an edge of the contouring tree. A pre-order traversal* visits the root, the left

subt-ee (CHILD(-,ODE)) and then the next right subtree, etc. An edge's range

is defined to bc the set of values between those associated with the nodes on

either end of edge. More precisely, we say a contour level is within an edge if the

following condition holds:

lowernode'svalue <= contour level < highernode'svalue

The drawing instruction issued for each edge is the one associated with the

lower valued node of the edge. The coordinate for each of these edges is generated

by a linear interpolation of the edge's end point coordnaLes according to the

decrease in contour level along the edge.

There are some subtleties not evident from the above that are best detailed

using a pseudocode description of the traversal algorithm. Figure 2.21 depicts the

traversal pirocedure for the contouring tree assuming a particular data

organization. The pointers to the descendent nodes of NODE are CHILD(NODE)

and SIBLING(NODE). For each node ef +he contouring tree, there are three

pieces of information: the value associated with the node. VALUE(NODE). the

coordinate associated with the node, XYZ(NODE). and the connectivity with the

node. CONNN(NODE).

The generation of coordinates and drawing instructions from a contouring

tree begins with routine CONTOUR SUBGRID of Figure 2.21. That routine

receive,; a pointer to the root node of the contouring tree. It then starts the

traversal by calling routine VISIT with that root node. Routine VISIT checks to

see if the edge defined by the passed in node and that node's ancestor. NODE

and ANCESTOR. contains the contour level. If the edge does contain the contour

level, the edge intersection coordinate is computed using linear interpolation and

issued to the display along with the connectivity associated with that node.
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CONN(NODE). If we issue a coordinate and connectivity for a node, we need to

check the subtree under that node for equivalued edges. If an equivalued edge at

the contour level is found, a coordinate and drawing instruction pair are issued

io'r that edge (routine VISIT SUBTREE). Once a coordinate and drawing

instruction pair have been issued for an edge, and once the subtree beneath that

edge has been investigated for equivalued edges, further traversal ef that subtree

is terminated. If an edge is found not to contain the contour level, the traversal

continues as depicted at the bottom of routine VISIT.

The pre-order traversal procedure described above generates the coordinates

and drawing instructions for the part of the grid the contouring tree represents.

Figure 2.22 shows the coordinates generated for the 3x3 grid of Figure 2.1 Figure

2.2 shows the contour lines drawn by using those coordinates and drawing

commands.
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using the situation naming scheme described in chapter 2. The procedure works

in the following fashion.

The first step is to determine to which situation each node of the directed

graph belongs. The second step is to examine the edges belonging to the situntion

and to set the appropriate values in the in-degree matrix. For example, for node

(1j,), we call procedure situation_1. In this procedure, the directions of three

edges are examined and recorded in the in-degree matrix. The first edge

examined is (1,1)-(2,1). The value of minus one is put in D(2,1) to indicate the

edge is directed from node 2 to node 1. For the second edge, (1,1)-(1.5,1.5), the

value of minus one is put in D(5,1) to indicate the edge is directed from node 5

to node 1. For the third edge, (1,j)-(1.2), the value of minus one is put in D(4,1).

Once the edges associated with node (1,I) have been examined, the in-degree

matrix construction procedure then performs a similar set of operations on node
(2,1).

Once the above operations have been performed on all nodes of the directed

graph. the in-degree matrix is completed by computing the values on its diagonal.
The value of in-degree matrix D(i.i) indicates the number of edges directed

towards node i in the directed graph. This value is computed by summing the

total number of minus one values in column i. Figure 3.5 shows the in-degree

matrix for the directed graph of Figure 3.4.

B. CONTOURING TREE FOR THE EXAMPLE GRID
Contouring tree construction is a growth process that begins from each node

indicated in the in-degree matrix as lacking incoming edges. These nodes. termed

root nodes. have D(i.i) values of zero. The in-degree matrix of Figure 3.5 has

three zero valued entries on its diagonal at node 3. 6, and 19. The contouring tree
construction procedure grows a .eparate contouring tree from each of these nodes.

Figure 3.6 -hows the three contouring trees created out of the in-degree

zxinatr:x. Let's t:ýy to create the contouring tree rooted at node (2.2).

There are eight edges connected to node (2.2). We push those edges- into a

stack in a clockwise order. The starting edge for this order is selected by the rule
shown on Figure 2.12. In our case. edge (2.2)-(2.5.1.5) is the starting edge. Edges

(2,2)-(2.5.1.5), (2.2)-(2.1). (2.2)-(1.5.1.5). (2.2)-(1.2). (2,2)-(1.5.2.5). (2.2)-2.3).
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Chec k subtrees of this node for equivalued edges.
UTSUBTREE( CHILD NODER.NODE)

VISIT-SUBTREE(SB IN(O ) RNOE)

return # no need to examine the subtree further.

}#endif coordinates were generated for an edge.

VISIT (CHILD(NODE)NO4DE) visit left suhtree.

VISIT (SIBLIN!& (INO )),NODE) # visit right subtree.

return

* end

Procedure VISITSUBTREE(SUBNODE,SUBANCESTOR)

if(SUBNODE == NULL)

return

if(VALUE(SUBNODE) == CONTOURLEVEL)

Issue coordinates for the equivalued edge.
Setpoint on XYZ(SUBANCESTOR).
Drawto XYZ(SU 13NODE).

VIST UBTEECHILD(SUBNODE).SUBNODEI

return

end

* ~Figurt- 2.2! tromtmcnid)

Pseudocode of the Trav-r-,aj .A!horithir for- the Contouring Tree



First Tree Rooted At Value 150.00
Level so0

x -y D

2.9091 2.0000 I0.0000 1
2.8333 2.1667 0.'000 0
3.0000 2.5000 0.0000O -

3.2222 2.7778 0.0000 0]
3.2500 3.0000 0 .1O0 0 0j 0

3.2000 3.2000 T .&ioo 0
13.0000 4.0000 00~
12.6687 --.0000 I0. 000 1
2.250 j_2.7500 0o.ooojjj

12.0000 1 2.8333 LI.0000 1....01

Second Tree Rooted At Valu~e 190.00

3, ___Level 50~

X Y Z D

.oo 3.120.00o00_
2.1905 3.1905 0.0000 0 0

2.6M67 3.0000 0.0000 0:

~J3.0000 1 4.0000 00000 Iji
3.2500 00 0.00900 0

i Fe-st Tree Rooted At Value 190.00
___ Level 100

fX Y Z D'

2.4545 2.00000 0.000 I
2.3125 2.3125 0.0000 0

2.0000f 2.4187 0.0000 I0

Second Tree Rooted At Value 190.00

Level 100

2.00 9,37 0 0 0 1

2.41F6 3.5814 00000 0

2.6429 4.0000 0 0000

(olumn D is the drawing command. '. I - SETPOI\T n [)DH \•i'T

Figure 2 ?2
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IlL A COMPLETE EXAMPLE

In this chapter we apply the contouring tree algorithm to the 4x5 grid of

Figurr 3.1. We create the in-depee matrix for the grid. We then build the

contouring trees from the in-degree matrix. The final step we show a the

generation of coordinates and drawing istructions from the contouring trees.

Figure 3.1 shows the density values of the two-dimensional grid of our

example. The density values are input to the aigorithm as a two-dimensioaal

array. The first step of the algorithm is to compute the average density values

for the center points of each 2x2 subgrid of the 4x5 grid. Figure 3.2 shows the 4x5

grid with the calculated center point densities.

The second step in the algorithm is to create the directed graph from, the U5

grid. To get the directed graph from the grid, we assign a direction to ench edge

of the 4x5 grid using the density -alue assigned to each node. For the eqcvalued

edge. we assign a direction to the edge that is counterclockwise with respet to

the growth node. Figure 3.4 shows the directed graph of the 4x5 grid of Figure

3.2. In this directed graph, there are no equi-alued edges. The arrowheads on the

edges of the directed graph point in the direction of the lower valued node. Fo0

example. the arrowhead on edge (1.1)-(2,1) is toward to node (1.1).

A. IN-DEGREE MATRIX CREATION

We create the in-degree matrix to reflect the directed graph better. To cmeate

the in-degree matrix, we need to provide a mapping from the nodes of the 4x5
grid to the nodes of the 'in-degree matrix, Figure 3.3 shows this mapping., The
number on the node in the 4x5 grid is the node number in the in-degree matrix.

For example. node (1.1) in the grid is as.•ociated with node num-er I in tfe in-

degree matrix. Node (1.2) is associated with node number 2 in the -lndegree

-natrix. Node (3.1) i a.,.waated with node number 6. etc.

The mapping procedure that as.mciates a node number in the directed graph

with a node number in the in-degree matrix is performed on a ca.e-by-case lIa.sis
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Figure 3.1

An Example 4X5 Grid With Density Values

72



70 40 lO 0

10 190 50 10

0 30 so 2

sO 15C 40 30

~~ 205J070

Figure 3.1

An Example 4X5 Grid With Density Values
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For Reference To The In-Degree Matrix
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using the situation naming scheme described in chapter 2. The procedure works

in the following fashion.

The first step is to determine to which situation esch node of the directed

graph belongs. The second step is to examine the edges belonging to the situation

and to set the appropriate values in the in-degree matrix. For example, for node

(1,1), we call procedure situation 1. In this procedure, the directions of three

edges are examined and recorded in the in-degree matrix. The first edge

examined is (1,1)-(2,1). The value of minus one is put in D(2,1) to indicate the

edge is directed from node 2 to node 1. For the second edge, (II)-(I.5,1.5), the

value of minus one is put in D(5,1) to indicate the edge is directed from node 5

to node 1. For the third edge, (1,j)-(1.2), the value of minus one is put in D(4,1).

Once the edges associated with node (i,1) have been examined, the in-degree

matrix construction procedure then performs a similar set of operations on node

(2,1).

Once the above operations have been performed on all nodes of the directed

graph. the in-degree matrix is completed by computing the values on its diagonal.

The value of in-degree matrix D(i.i) indicates the number of edges directed

towards node i in the directed graph. This value is computed by summing the

total number of minus one values in column i. Figure 3.5 shows the in-degree

matrix for the directed graph of Figure 3.4.

B. CONTOURING TREE FOR THE EXAMPLE GRID

Contouring tree construction is a growth process that begins from each node

indicated in the in-degree matrix as lacking incoming edges. These nodes. termed

root nodes. have D(i.i) values of zero. The in-degree matrix of Figure 3.5 has

three zero valued entries on its diagonal at node 3, 6, and 19. The contouring tree

construction procedure grows a separate contouring tree from each of these nodes.,

Figure 3.6 %hows. the three contouring trees created out of the in-degree

matr:x. Let's t:'v to create the contouring tree rooted at node (2.2).

There are eight edges connected to node (2,2). We push those edges into a

stack in a clockwise order. The starting edge for this order is elected by the rule

shown on Figure 2.12. In our case. edge (2.2)-(2.5.1.5) is the starting edge. Edges

(2,2)-(2.5.1.5), (2.2)-(2.1). (2.2)-(1.5,1.5), (2 .2)-(1.2). (2,2)-(1.5.2.5). (2.2)-(2.3).
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D(ij) 1 2 3 4 5 6 7- 8 9 10 11 12 13 14 15 16

1 0o o o 0 1 0 0 0 0 0 0 0 0

2 -1 4 0 0 0 0 0 0 0 0 0 0 0 0 0 .0

3 0 -1 0 - -1 0 -1 l- 0 0 0 -1 0 -1 0 -1

4 -1 0 0 3 0 0 0 0 0 0 0 0 -1 0 0 0

5 -1 -1 0 -1 1 00 0 0 0 0 0 000 0
7 00 0%'do 001:-0 -1 0 0 0o 0 -1 0 0

.7 0 0 0 0 0 6 0 0 -1 1 20 0 0 0000
S-1 o 1) o 0 -1 2 0, 0 0 0 0 0 0 0II -

9 0 0 0 0 0 0 0 0 1 -1 -1 0 0 0 0 0l%. o 0 0o o o 0i 0 4 0 0 0 0 0 o
10 0000

0 0 o 0 0 0 -1 0 0 -1_2 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 7 1 0 0 0

13 0 0000 0 0 0 -0 0I 0

14 0 0 0 -1 0 0 0 0 0 0 0 0 -0
is 0 0 0 0 0 -1 0 0 o 0 0 , 0 0 2 0

15 oo 0 0 0- 0 0 0 0

17~1 o o o o -o o o o00 0 0 0 0 0
16 0 0 00 [ -1 0 0 0 0

19 0 0 0 0 00o oo o o0 0 o o-o20 0 0 0~~100 0.1
0 0 0 0 00 -10 0 0 01

21 010 OJ 0 o 0 0 o to -1 .1 0 0
"22 0 0 0 0 0 00 0 0 3 0 00 0 1 00

24 o0 0 0o 0 o o 0 o o 0 -, o o -0 o

24 0 0 0 0%O:%0 0 0 0 0~ 0 0 0 0

27 1j0 010 1 0_ _0 0 0 0 010 0 0 0 0 10

28t00 0 0 O~ 101 O0 000 0 0 0 000o

27 o o o o 0o 0o 0o. o_67 o o 0 o o o o

28 0 0 0 0 0 0 • 0 0 ' 0 0 0 0 0 0 0 0

29 0 0 0 00 0 o o 0 0 0 0 02s o o o o o o o o0 o1' 4o o o o 0

30 o ~ t ~ 0 - -0 0 0 0
o• o o ,o oo o .o o 0 0

09 0 0 0 0 0 0 0 0%" 76T 00!',0 oo

Figure 3 5

In-Degree Matinx Created From The Directed Graph Of Figure 3 4
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D(ij) 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32-I

0 24 0 0 0 0 0 0 0 1 '2

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 ___ 0 o 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
's_ ý -1 _ - _

5 0 0 0 0 0 0 0 0 0 0 0 : 0 i0 0:0 O

-1 0 j 00 010 0100 0 0 0
8 C 0 0 0 0 ___

8 0 _ _ _ _ _ _ _0 0 0 0_ _ _ 0 _ 0

1 0 0 0 0 0 0 0 0 0 0 O0j 0 0 0o 0

7 i0 -1 0 0 0 C 0 0 00 0 0 0 0 0 0 0 0 0

13 0 I0 0 -- - 0 0 0 0% 12 0 0 00 0 o 0 00 -o 0 01•0 o 0 0 0

I___3 0 0 0 0 0 0 0 0 0 0 0_ 0 0 0 0, 0
04 000,0 000 0 000

18110 0 0 100 1 0 0 0 !0 0 0 0
120; 0 r 0  0 0 0 0 0 0 0 0 0 0 0 0 ,0_____ ooooooo o o , o i -- ___-_-o o__ o____o17 0 0 0 o 0 0 o

2 0 0 0
S15 0-1 2 0 0 0 -1 0 0 0, 0 0 0 0 0 0 0
-19 40 0 0 - O- I-- Oi 1 0 0 1 0 1 0 ,- O, 0 0

24 00 0 401 0 O. 0 0 0 0 0 0o0 0
21 -0 0 0 0 0 0 01 02 0 0 0 0 0 0 0

26 0 0 0 0 0 -1 1 0 0 1 0 0 -1 0 0 0
2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 _11i 0
25 1 0 0 0 0 0 0 -1 20 0 0 0 - 0 0 0 -0

26 0 0 0ý -0 00- 0 0 0 410101 0 0 0 0

29 0 0 0 0 0 0 0 0 0 0 0 0 4 0 -1 0
30 0 0 0 0 0 -1 0 , 0 0 -1000 I1 0 0
31 0 0 0 00 0 0 0 3 0
32 0 0 0 0 0 0 0 -1 0 0 0 0 -1 0 .1 1

Figure 3 5 (Continued)

In-Degre~e Matrix Created From The Directed Graph Of Figure 3 4
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(2,2)-(2.5,2.5), and (2,2)-(3,2) are pushed into the stack respectively. When we

take an edge from the stack, the order for checking the edges is counterclockwise.

The first edge pushed into the stack is the last edge to be checked.

Edge (2,2)-(3,2) on top of the stack is taken and checked. Since this edge is

directed away from the growth node, node (3,2) on the end of that outward edge

becomes the new growth node We link this node to the contouring tree. We push

the edges connected to node (3,2) into the stack in a clockwise order. There are

then two differents groups of edges in the stack, one for node (2,2), one for node

(3,2). We take edge (3,2)-(2.5,1.5) from the top of the stack and check it. It is

an inward edge. The next two edges, (3,2)-(3,1) and (3,2)-(3.5,1.5), are also

inward. We skip those edges and take another edge from the stack. Edge (3,2)-

(4,2) on top of the stack is outward. Using this edge, we go to node (4,3) and

then link that node to the tree. We push all the edges connected to node (4,3)

into the stack. This process continues until we reach the empty stack. During

this process, we go through all possible paths from the root node to the other

nodes in the directed graph. We link the nodes on the paths, to the contouring

tree, except for the following case.

If we come to a node which has already been visited, we apply a different

procedure to that node. We don't push all the edges connected to that node onto

the stack, except the edge(s) immediately adjacent to the edge used to come to

that node. If these edges are outward, then we link the node on the end of the

outward edge to the tree. We don't push any edge connected to this newly linked

node. In other words, we don't take into account the descendents of that node.

We then go back to the previous node. The reason for this is that the outward

edges, connected to the already visited node. have been linked before to the

contouring tree. If we again link those edges to the tree. then we create repeated

subtrees in the contouring tree. Reneated suhtrees cause the duplication of the

contour lines., Let's see how we apply this rule to the directed graph of Figure 3.4.

After creating the first trke rooted at node (2.2), we go from the root node to

node (3.2) by using edge (2.2)-(3.2). Aftcr going through all the paths from node

(3.2) to the other nodes in the directed graph. we go back to the stack and check

.-dge (2.2)-(2.5.2.5) on top of the ilack. This edge is outward. Using that edge. we
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come to node (2.5.2.5) and then start checking the edges connected to node

(2.5.2.5) in a counterclockwise order. The first edge is edge (2.5.2.5)-(3.2). Using

this edge, we come to node (3,2). But we have already visited this node. Now we

apply the rule explained above. In this case. we only take care of the edges

immediately adjacent to edge (2.5.2.5)-(3.2)., We skip the rest of the edges

connected to node (3.2). The adjacent edges are edges (3.2)-(2.2) and (3.2)-(3.3).

Since these two edges are inward we don't link any nodes to the Zree..

C. DRAWING INSTRUCTION PLACEMENT

In the contouring tree for the example grid of Figure 3.6. the number und0r

the density value of the node shows the drawing command for that node. We

insert drawing commands by way of a pre-order traversal of the contouring tree.

The edges are examined in a counterclockwise., and downward ordering from the

root. We note that we need to place setpoint drawing commands on the lower

valued node of each edge that presents a new lowest value for the tree. Figure

- 3.6 shows the -;etpoint command "1" under the node coordinate for each new

lowest density value in pre-order traversal order We can also see the setpoint

command "I" under the lowest valued node of each edge where split edge

problem. occur. Some neighboring edges in the contouring tree. i.e. edges sharing

an ancestor node. have a "split" between them. i.e.. the edges are not immediate

counterclockwise neighbors in the original grid. We indicate this split by placipg

a "1" on the lower valued node of the edge where the discontinuity occurs. For

example, in Figure 3.4. the edges (1.2)-(1.3) and (1.2)-(1.1) are ne;ghbors ir. the

contouring tree but are not imnnediate neighbors in the original grid. We place a

"1" on the lower valued node of edge (1.2)-(1.1). i.e. node (1.1),

1). DISPLAY GENERATION

Display generation from the contouring tres, for the example grid is

accomplished l;y performing a pre-order traveral of those trees, producing a

coordinate and drawing ,instruction whenever the deksired contour level is found to

be iithin the range of an edge of a contouring tree., The coordinate for each of

these edges is generated by a linear interpolation of the edge's eidpoint

c-oordinates according to the decrease in contour level along the edge.
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The coordinates and drawing commands genemed for the contouring trees of

Figure 3.6 at level 50 and 100 are shown in Figure 3.7. Figure 3.8 shows the grid

with contours drawn for levels 50 and 100.
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4First Tree Rooted At V'4du 10.00

4,Level50'

SXY Z D

2.9091 2.0000 0 WO 0

2.8333 2.1667 n 0000 0
3.0000 2.5400 0.0000 a

32222 2.7778 (060000
3 2500 3.0000 00000 0

320O0 3.2000 00000 0

e3.0000 4.0000 0.0000 0

, 2.6667 3.0000 0 CO00 I

2.2500 2.75M0 0.00W0 0
2.0000 2.8333 00000 0

.36 2.6364 0000 0 0
.1.438 2.W652 00000 0
1.0000 2.0000 00000 0

1.31 158 1019 00000 0

"2.0000 1.0000 0.0000 0

2.8824 1.8824 00000 1

2.9091 2.0000 0 0000 0

Second Tree Rooted At Value 90.00

Level 50
X y Z D

•"4.OO0G 1 .5000 0.0000 1

3.6364 1.6364 0.0000 0

"3.2857 1.714' 0.0000 0

3.0000 1.8000 0.0000 0

2.8824T 1.8824 0.0000 0

2.0000 1 1.0000 0.0000 1

_2.0000 1.0000 0.000o 0

Column D is the drawing command, i.e. I SETPOINT. 0 DRA%,TO

Figure 3.7

Coordinates Genera"ed For The 4X5 Grid
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Third TMe Rooted At Value 190.00
Lev.l50 s

l. X Y Z'D
3.0000 4.0000 0.0000 1

3.0000 4.0000 0.0000 0

2 6800 4.6800 0.0000 0

2.1538 4.8462 0.0000 0
2.0000 4.9333 0.0000 0

1.8667 4.8667 0.0000 0
1.6667 5.0000 0.0000 0
1.0000 4.6667 0.0000 1

1.2963 4.2963 0.0000 0

1.2222 4.0000 0.0000 0

14211 3.5789 0.0000 0

14348 34348 0.0000 0
1.6384 3.3636 0.0000 0
2.0000 3.1250 0.0000 0

2,190 -3.1905 0.0000 0

2.6667 3.0000 0.0000 0

3.0000 4.0000 0.0000 I-3.00oo 40000 0 .0Yoo

First Tree Rooted At Value 150.00

Level 100

x y T Z ;D

2454 2.0000 0.0000 1

23125 2.3125 0.0000 0
2.0000 2.4167 0.0000 0

1 7297 2.2703 0.0000 0
150O0 2.0000 0.0000 0

1.6970 1.6970 0.0000 0

2.0000 1.zIoo 0.000o0o 0
2.3704 1.6296 O.( 0.00 0
2.4545 2.0000 0.0000 0

; Second Tree Rootpd At Value 90.00-

Level 100
yX Y -- D

-_ No coordinate

Column D is the drawing command. i.e. I - SETPOINT. 0 -= DRAWTO

Figure 3 7 (continued)

Co.,rdinates Generated For The 4XS Grid
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Third Tree Rooted At Value 190.00

Level 100
SX Y :D

2.6429 4.0000 0.0000 1

2.3830 4.3830 0.0000 0

2.0000 4.6000 00000 0
1.6000 4.4000 0 000 0

1.5000 4.0000 00000 0

1.6604 3.6604 00000 e
2.0000 3.4375 00000 0

2.4186 3.5814 00000 0

2.6429 4.OOO 0 0000 0

Column D is the drawing command. i.e, I = SETPOINT. 0 DRAWTO

Figure 3 7 fcontinued)

I.

Coordinates Generated For The 4X5 Grid
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70 40 10 0

1( 509 so 0

0 _________ 20

-1_0 40 30

120 _ 90 70

Figure 3.8a

The 4x5 Grid with Contours Drawn for Level 50
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70 40 10 0

__0 30 60 20

V.50 ý1 5 40 30

120 50 190 70

Figure 3 8b

The 4x5 Grid with Contours Drawn for Level 1OC
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IV. CONCLUSIONS

"This study has described a graph theoretic algorithm for contour display

generation. A Large Contouring Tree Algorithm for the operations used to

generate the contour lines for a regularly subdivided grid was developed.

The inadequacies of currently published algorithms, with respect to contour

line generation for a regular grid, have been pointed out in a brief review of the

available literature. The new algorithm solves the picture efficiency problems

described in [Refs. 1-4], [Refs. 6-8]. A data structure, the Large Contouring Tree

has been introduced as the basis of a new algorithm for generating the contour

lines for a two-dimensionial grid, The presented algorithm is based on the 2x2

Subgrid Algorithm of [Ref. 1]. The 2x2 subgrid algorithm builds a general

framework useful for the generation of the coordinates and drawing instructions

for any 2x2 subgrid. But there is a picture efficiency problem with this algorithm.

i.e. edge duplication and vector ordering problems. The Large Contouring

Algorithm s dyes these problems.

The only problem with the new contouring trec algorithm is when all of the

edges in a 2x2 subgrid of the larger grid are equivalued edges. In this case. the

algorithm outputs the coordinates of all the edges in the 2x2 subgrid with proper

drawing instructions. The contour lines produced look like squares with diagonal

cre-ssing lines. This problem can be solved by determining the equivalued 2x2

subgrids in the larger grid before the contouring tree process and then skipping

those 2x2 ,ubgrids.
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APPENDIX A

IMPLEMENTATION OF LCT NEW ALGORITHM

program LargeContounngTree (InpFile,output);

type

( used to store density values of grid )

inputtype = arrayiO..50,0..5OJ of real;

In DegreeMatrixtype =array 1...40,1, 40] of integer;

(* Gives the grid ccordinates of the node in the in-degree matrix *)

CoordType = array 1.: 100i of record
X: integer;
Y: integer:

end:

(* gives the node number in the in-degree matrix associated with

the given node in the gnd. *)

NodeCoor = array 1..1,1..10 of integer;

PointerType NodeType:
(* D-ta structure of the binary representation of the contouring

tree 8)

NodeType = record
8 Xval.YVw.,Dnsty real:

Data,Draw . integer.
Chald.Sibling,pred PointerType;

end;

tleadermT) pe - ^ListOf~teader:

( A pointer header list holds th- root nodes of the trees 8)

ilsiOflteader - record
Tree PointerT)pe.
Child HeadersT. pe:

end;
Sar

(l Maximum coordinate values of the input grid 8)

Xmax. Ymax .integer:

(,ontourLevel,limit integer:

(8 Maximum node number in the in-degree matrix )

limit-integer:
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(t Xbase and Ybase are used to change coordinate base

from (1,1) to whatever input data is given. *)

Xbase,Ybase integer:

NodeDensity :inputtype;

InDegreeMatrix ': InDegreeMatrixtype;

(= Crossreference from the in-degree matrix to the grid *)

Coord CoordType;

(* Crossreference from the grid to the in-degree matrix *)

FromGridToMatrix : NodeCoor;

TREE PointerType;

Headers HeadersType;"

lnpFile text;

(* ==> SECTION 0: READING AND WRITING INPUT DATA <==

"Read the maximum coordinate values for the grid aad calculating the
maximum siz:! of the array which holds the grid density values

procedure Initialize;
begin

reset(InpFile);
read(In pFile,Xmax);read (In pFile.Ymax),
read (InpFile,Xbase);-read (in pFile, Ybase);
limit- (Xmax*Ymax- (Xmax-') '(Yma;.-1)1,

end,

Read the input data arid raicuinting the average den.ity values on

,-enter points

procedure ReadData,
var ij . integer;
begin

for j ý= I to Ymax do
for i - I to Xrnax do

read( lnpFile.\odeDen i.• ,j i ;
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readln(InpFile),

( Calculati-g average density values *)

for j:= I to Ymax-I do
for i:= 1 to Xmax-1 do

NodeDensity[Xmax+ijl:=(NodeDen!ity!i+i~jj 4- NodeDensity i--lj-11
NodeDensityjijý + NodeDensityli.j-,-l')/4

end; (* PROC *)

Write the input data with calculated average density values on center
points

procedure WritelnpData;
var ij . integer:
begin

writelin.
write(" ""...*' DENSITY VALUES OF NODES IN GRID '):
writeln( 5,* ****...,}

writein,
write('X--> ' 13,':3);
for i .= 2 to 2*Xmax - I do

write~i:8}:writein.

A riteln:
ferj - I to Yrmax do begin

ifj=I
then write('Y -. >

eise write(j:12.'-');
for i .= I to 2*Xmax - I do

%write(NodeDensify ij;.8'3):
%riteln; writeln;

end (' FOR ")
writeln;
write('Locations Of Average Density Values Start 1.
writeln('After X - ',max'2).

end (' PROC *

SECTION I CREATION OF IN-DECREE \IATRIX 5)

p.. (6*55*.. .............. ***V***St**t*5 *.**.......

Situation I i- the n.ame 4,f the case for the node in the Iomier
left hand corner of the grid

..... . . . . . . . . . . . . .....Ss~s

procedure Situationl (ij integer.%ar k.1 integer ).
begin

(* checking edge number I "
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if Nodelensitylij] >-r NodeDensity[i+Ijj
then InDegreeMatrixii,i--l] :=-1

else InDegreeMatrixji+1,ij:= -1;

(* checking edge number 2 *)

if NodeDensitylij] >= NodeDensity jXmax+ijj
then InDegreeMatrixii,k] := -1

else InDegreeMatrix[k,ijL-= -1;

('checking edge number 3 )

if NodeDensitylij] >= NodeDensitylij+lI
then InDegreeMatrixii,k-1l := -1

else InDegreeMatrix[k-l,ij := -1;

( Increments of the "I" and "k" *0

I ";= 1+;
if( Xmax <> 2)

then k := k+3;
end (* PROCEDURE *),

Situation 2 is the name of the case for all nodes on the perimeter grid
line with the lowest valued Y coordinate, except for the first and last
nodes.

procedure Situation2 (ij :integer;var k,l:integer),
begin

(* Checking edge number 3')
if NodeDensityliji >= NodeDensi.ylij+lj then begin
ifi = 2

then lnDegreMatrixzi,il1: -1
else lnDegreeMatrix'l.k-4 := -1

end
ele begin

ifi = 2
then hiDegrveMatrix i-I.i. :=-1

eLe InDegreeMatrix k-4.1 := -1
end.,

(* Checking edge nimber 4 ')

if NodeDensity ij --= NodeDensity Xmaxu+-Ij
then lnDegreeMatrix;.k-3 - -I

else lnDegreeMatrixik-3,1! = -1;

(' Clecking edge number 2 )

if NodeDensity ij' >= NodeDensity Xmax iij
then inDegreeMatrixil,k -!
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N-I.

else InDegreeMatrixik,l] -1;

( Checking edge number I

if NodeDensity[ijj >= NodeDensityli+1j] then begin
ifi = 2

then InDegreeMatrix[i.1+4] := -1
else InDgreeMatrix~l,l+31 := -1

end
elbe begin

ifi = 2
then InDegreeMatrnxll+4,ij := -1

else InDegreeMatrix~l÷$3,1 := -1
end; (* IF ')

(* Increments of the "I" and "k" *)

ifi = 2
then I := 1+4

Selse =I 1+3;
ifi <> ( Xmax-1)

then k := k+3
end; (* PROC 1

Situation 3 is the name of the case for the node in the lower righthand
corner of the grid.

procedure Situation3 (ij :integer;var k.i:integer );
begin

( Checking edge number 1 )

if NodeDensitylijj >= NodeDensityji-j+ 11
then InDegreeMatrixil,l+ 1 := -1

else InDegreeMatrix l-1,1] := -1;

( Checking edge number 2 *

if NodeDensity i,' >= NodeDensityýXmax-i-lj
then InDegreeMatrix l.k -1

else InDegreeMatrix k.1 -1:

( Increments of the "I" and "k" )

I: 4:
if Ymax =2

then k =5
else k := k-3;

end .(PROC)
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Situation 5 is the name of the case for all nodes on the perimeter grid
line with the lowest valued X coordinate, except for the rust and last
nodes.

*'• procedure Situation5 (ij :integer;var k,linteger);
begin

(* Checking edge number 2 }

if NodeDensity~ij' >= NodeDensity[Xmax+ij-l]
then InDegreeMatruxil,l-1 :=-1

else 1nDegreeMatrixjl+1,:= -1;

( Checking edge number 3 0)

if NodeDensity iji >= NodeDensityli+1j]
then InDegret.1atrixj'l,l-lj: -1

else InDegreeMatrixi;i-.,1 := -1;

(* Checking edge number 4 ")

if NodeDensity iji > = NodeDensityiXmax+ijj
then InDegreeMatrixil,ki -1

else InDegreeMatrix;k,l, :

( Checking edge number 5 *)

if NodeDensity i~j >= NodeDensityjij-Ii
then InDegreeMatrix'l,k-11 := -1

else InDegreeMatrix:k-l,l1 := -h

(* Increments of the "1" and "k" )

1 =I-h:

if Xmax < > 2
then k:=k-2;

end; (* PROC *)

Situation 6 is the name of the case for uon-perimeter nodes that occur
at crossing points of the two-dimensional grid.

* procedure Situation6 (nj ::nteger-var k.l:nteger );

begin

( checking edge number 3 "1

if NodeDensity ij >- = NodeDensityaj - I then begin
if = 2

then InDegr"eMatrix I.k-4 -I
else InDegreeMatrix I.k-3 --
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end
else begin

if i= 2
then InDegreeMatrixlk-4,11j: -1

else InDegreeMatrix[k.3,lJ -1
end;

(checkinig edge number 4 '

¶ ~if NcodeDensitylijj >= NodeDensity;Xmxna--i-ij]
then InDe7-:c,'atrixjI,k-21 -1

else JnDegreeMatrix'k-2,1 -1

(checking edge number 2)

if NodeDensityjij: >= NodeDensity!Xmax+ijl
ther. InDegreeMa~trixi~kI : -1

else InDegreeMatrixik,l] : -1;

(checking edge number 6)

if NodeDensitylijj >= NodeDensi%;y'Xmax%-t-i-1j-lj then begin
if i =2

then lnDegreeMnitrixil,l--2j 1
else JnDegreeMatrixfl,l+lj : -1

end
4 else begin

if i= 2
then InDegree.Matrixil-.2,11 : -1

else InDegreeMatnixil+ 1,l1 -1
end;

- . - ~'checking edge number 8)

if Node~ensityiji~j >= NodeDensity'Xrnax-tij-I, then begi
if ( i = 2 ) and ( j = 2 )

then InDegreeMat-ixl,l-s51 -1
else il ( i = 2 ) or (j 2 )

then lnDegrezMatrix~i,l-s4j : -14 ~ ~else lnDegreeMatrixjl,l-3'-3 =-
end
else begin

if ( i = 2 ) and (j = 2
then lInlegree.Matrixl1-5,l1  i

else if ( i=2 )or j2)
then lnDegreeMttrix 1-~4.! -

else InDegree.Matrix 1- 3.1
end.

(checking edge number I

if NodeDensity~ij >ý- NodeDensity i-*j. then begin
if ( i = 2 ) and ( j = 2 ) theni begin

lnL~egreeM&LriX~l,l-4ý -1;
1 1-4

end
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else if(j=2) 'i(i = 2)then begin
I:= i+3

end
else begin

InDegreeMatrixlll21-21 -1;
i1:= 1--•2

end
end
else begin

if( i= 2) cad( j= 2 )then begin

lnDegreetiatrix1l+4,11 :=-1;
1:=1- I

end
else if (j =2 ) or( i =2 then begin

InDegreeMatrixil-i-$,1i -1;
1 := 1+-

end
else begin

lnDegreeMatrixtl+2,l! -1;
1 := 1-2

end
end;
if i <> ( Xmax-I

then k := k+2
end;(* PROC '}

Situation 7 is the name of the case for rIl nodes on the perimeter grid

line with the highest valaed X coordinate, except for the frst and
.- '. •last nodes

procedure Situation7 (ij :integer;var k,l:integer),begin

(' checking edge number 1 )

if NodeDensity iji >= NodeDensity aj- 1'
tGen if Xmax=2

then InDegreeMatrL lk-2!:=--
Selse InDegreeMatrx IAk-l! := -1

else if Xmax = 2
then InDegreeMatrix k-2.1 :=-I

else lnDegreeMatnx k-.l1' -= -I.

( checking edge number 2 )

if NodeDensity ij! >= NodeDensity Xmnax-- lj
. ~ ~then inDegreeMatrixI,lk' =-

else inDegieMatrix'k.I: -I;

( checking edge number 4 'I



if NodeDensitylij' >= NodeDensityýXmax+i-li-l1
then if Xmax=2

then InDegreeMatrixjl,l-i-2j:=-1
else InDegieeMatrixnlj+AI := -1

else if X•nax=2
then InDegreeMatr;%Il+2,1I:=-1

else InDegreeMatrixll+l,1i := -1;

(* Increments of the "k" and "I" *)

if Xmax = 2
then 1:=1+4

else I := 1+3;
ifj <> (Ymax-1)

then k := k+3
else k := 1+1;

end; (- PROC *)

Situation 8 is the name of the case for the node in the upper lrfthand
corner of the grid.

procedure Situation8 (ij :integer;var k,l:int-ger ),
begin

( Checking edge number I )

if NodeDensitylijj >= NodeDensityii+1•,I
then InDegreeMatrix:l,l-l1 := -1

else InDegreeMatrixl-1,1 := -1;

(* Checking edge number 2 *)

if NodeDensityjiji >= NodeDensity'Xmax+ij- 1
"then InDegreeMatrix0l,l-i1 := -1

else InDegreeMatrixil+l,1! := -1;

(0 Incremenst of the "k" and "I" *)
Si := I-I;

if( Ymax =2 )and (Xmax <> 2)
then k k 3

else if( Ymax <-,2 ) rnd ( Xmax <> 2)
then k = k-2.

end: ( PROC ")

Situation 9 is the name of the case for all nodes on the perimeter grid line
with the highest valued Y coordinate, except for the first and last nodes
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precedilre Situation9 (ij .integ':r;var k,l:inte~er )
begin

(*Chet king edge numbe,. 2 ~

if NodeDensityliji >= N.odeDensity[Xmax+i-Ij-1:
then begin

if Ymax = 2
then inDegreeMatrixil,k-31 -1

else InDegreeMatrixil,k-2J -
end
else if Ymax =2

then InDegreeMatrix~k-3 ,11:z- -1
else InDegreeMatrixik-2,1j :=-1

'C (* Checking edge number 4 *)

if NodeDensityliji > = NodeDensityjXmax-sij-11
then InDegreeMatrix!i,ki -

else InDegreeMatrix~k,li -1;

(* Checking edge number 5 *

if NodeDensityi~jl >= NodeDensityli+lj!
then lnDegreeMatrixIlk-11J: -1

rlse hnDegreeMatrix'k-I,li = -1;

(* :ncrements of the "I" and "k" '

if i < ( Xmax-1 ) then begin
if Ymax = 2 thei' begin

1: =k-4;
end
else begin

k+2-.

ed k-3;
end

else I :=k-1;
end; (* PROC ~

Situa.ion 10 is the name of the cas.e for the node in the upper lefthand
corner of the grid

procedure Situation 10 (i~j :integer:var k.L.intcger )
begin

0. ( Ch-cking edge number 2)

if NodeDensity ij' >= NodeDensity'Xmax~-i-1.j I
then inDegreeMatrix l,k -
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else InDegreeMatrixik,l: -1
end;

Returns one of the ten possible situations with respect to the given
coordinate X,Y,

function Find(X.Y :integer) integer-,
begin

if( X= l)and(Y 1( )
then Find := I

else if(X < Xmax ) and(Y= 1)
then Find := 2

else if ( X = Xmax and Y= 1)
then Find := 3

else if X > Xmax
then Find := 4

else if( X= I ) andot(Y= Ymax)
then Find := 5

else if not( ( X = Xmax ) or ( Y = Ymax))
then Find := 6

eLte if ( X = Xmax ) and not( Y = Ymax)
then Find := 7

else if(X= 1) and(Y= Ymax)
then Find =8

else if not( X = Xmax ) and ( " = Ymax)
then Find 9

else Find := 10;
end ;(* FUNC )

Calculates the diagonal values of the In-Degree Matrix

procedure CompleteinDegreeMatrix;
var ij,Count :inttger;
begin

for j I to limit do begin
Count:= 0;
for i .= 1 to limit do

if ( lnDegreeMatrix'ij' = -1)
then Count:= Count-. 1;

( Shows how many -1 values are there in each
column in In-Degree Matrix

InDegreeMatrixjjj := Count;
FromGridToMatrix!Coordijj.XCoord j,.YF:=j;

end [ FOR );
end; , PROC )
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This is the procedure for creating the In-Degree Matrix by calling
the procedures above.

procedure CreatelndMatrix;
var ij,k,kl,l . integer;
begink:5

(Used to createn the crossreference *

for j :=1 to Ymax do begin
for i:= 1 to Xmax do begin

Coord[IlI. i;
CoordjlI.Y j
if k > k1 then begin

Coordlkl.X: Xmax+i;
Coord~kj.Y:=j
k1i: k;

end;
case Find(ij) of

1:Situationl(ij,k,l);
2:Situation2(ij,k,I);
3:Situation3(ij,k,I);

4:-iutin(j;,)
5: Situ at io)n(iij,k,I1);
6:Situ.ation7(i~j,k,l);
7:Situation8(ij,k,l);

9:Situation9(ij,k,I),
10:Situationl10(i j.k,I);

end; (* CASE)
end (* FOR '

end; (* FOR *)
CornpletelnDegreeM atrix;

end; (' PROC '

Output the In-Deg-ee Matrix.

proce.'ure WritelndMatrix;
var ij : nteger;
begin

writein;
writeln;writeln(' INDEGREE-MAT RIX ':35);write~n;,* nteln;
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for i := 1 to limit. do begin
write'i:2,')':1);
forj :-- 1 to limit do

write(InDegreeMatrix[ij]:3);

writeln;
end;(* FOR')

end; (* PROC )

(* --- > SECTION 2: BUILDING CONTOURING TREE <-*

Create the Large Contouring Tree for each root nzde in the in-degree
mat! ix.

procedure CreateTree;
var

XI,Yl,i,T: integer;

(* For keeping track of the already visited node *)

CheckNode:array 1..401 of 0..3;

(= Used to show which field of node will be used to link
for the next available growth node in the contouring tree *)

state: 1 .:.2;

(* Used to catch the root node of each contouring tree *)

first,second : boolean

('Takes true when all edges on the edge list are checked,
otherwise false ')

LastEdge • boolean

Head:HeadersType;

Put the root node of the contouring tree on the header pointer list

procedure Lin kOneHe ader(Root:PointerType);
begin
ifT > I then begin

new(Head Child);
H-ad ^.Child' Tree Root;
if T=2 then Headers: -Head;
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Head: =He ad .Child;
end
else begin

new(Head);
Head .Tree Root;
Headers:=Head;

end;
end ;(* PROC *)

Create the new growth node pointer, put data on it, link this new
growth node to the contouring tree, depending upon the value of state.

procedurz LinkOneNode(X,Y -integer);
var Temp : PointerType:
begin

new(Temp);
Temnp .Data:- FromGridroMatrix;X.Y',;
CheckNodeiFromGridToMatrix, X,Yi]: =1;

if X > Xmax then begin
Temp^ Xval:= (X-Xmax)-0.5+Xbase;
Temp .Yval := Y-rO.,'-Ybase;

end
e!se begin

Temp .Xval:= X+Xb&se;
Temv^.Yval := Y+Ybase;

end;

Temp .Dnsty:=NodeDensity jX,Yj;

case state of
I: begin

if second then begin
Temp-.pred := TREE;
TREE .Child:= Temp;
LinkOneHeader(TREE):
TREE := TREE^.Child;
secuad - false;

end
else if first then begin

TREE:= Temp:
TREE^.pred = nil:
second = true:

end
else begin

Temp pred := TREE:
TREE" .Child:ý Temp;
TREE := TREE .Child:

end;
end ; (' CASE 1 )

2 begin
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Temp" .pred:= TREE;
TREE^.Sibling:= Temp;
TREE:= TREE^.Sibling,
state'- 1;

end ;
end; (* CASE *)
TREE .Sibling := nil;
TREE'.Child:= nil;

end ; ( PROC *)

Search the immediate father node of the given a node,
switche the pointer to the father node.

procedure SearchFather(var TR•EE:PointerType);
begin

repeat
if ( TREE .Sibling < > nil) then begin

if TREE .Sibling -.Data = -1 then begin
dispose(TREE .Sibling);
TREE^.Sibling:= nil;
TREE := TREE-.pred;

end
else TREE := TREE'.pred;

end ;
until TREE^.Sibling = nil:

end;(* PROC. ')

This is the procedure for linking the new growth node to the contouring
tree. The procedure does this by ca!ling the procedures explained above.
It also maintains where the next growth node will be linked.

procedure ConstructTree (X,Y: integer;Exist Way: boolean):
"begin
if first

then LinkOneNode(XY)
else if ExistWay and LastEdge then begin

case state of
1: begin

Lin kOncNode(X,Y);
state := 2;

end:
2: begin

LinkOneNod-(X,Y);
new(TREE .Sibling):
TREE .Sibling .Data := -1:
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TREE .Sibling pred TRAL;
state 1;

end;
end; (* CASE *)

LastEdge := false;
end
else if ExistWay

then LinkOneNode(X,Y)
else if LastEdge then begin

case state of
1: begin

SearchFather(TREE);
state := 2;

end;
2: begin

TREE:= TREE .pred;
SearchFather(TREE);

end;
end; (* CASE *)
LastEdge := false;

end;
end;(* PROC. *)

Link the edges immediately adjacent to the edge used to come to
the node if those edges are outward.

procedure SharedEdge(Position X,Y, Nm,Pointer:integer;var ExistWay:boolean);
var XI,YI,X2,Y2:integer;
begin

case Position of
1 : case Pointer of

1,3 begin
X1:=Xmax-4- 1;
YI:=I;'

end;
2: begin

Xl:=X;

Yl:=Y+ 1;
X2:=X+l;
Y2:=Y;

end;
end; (* CASE I *

2 case Pointer of
1 begin

Xl:-Xmax+ X;
YI:=Y;

end;
2 :begin

Xl:=X,
Yh-=Y+I1;

X2:=X+ 1;
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Y2:=Y;
end;

3 :begin
X1:=Xmax-i-X-1;
Y1:=Y;

4 X2:=Xmax+X;
Y2:=-Y;

end;
4: begin

Xl: X-l;
Yl:=Y;
X2:=X;
Y2:=Y-s 1;

end;
5 --begin

Xl: =Xmax-ý- X-l;
Yl:=Y;

end;
end; (* CASE 2)

3: case Pointer of
1: begin

Xl:=Xmax-X-l;
Y 1:=Y;

end,
2: begin

Xl:=X-I;
Yl:=Y;
X2:=X;
Y2: =Y+ 1;

end;
3: begin

Xl:=Xznax-X-1;
Yi:=Y;

* r. end;
end; (*'CASES')

4 c case Pointer of
I1: begin

Xl:=X-Xmax-l- 1
Yi:=Y;
X2:=X-Xmax;,
Y2-=Y- 1;

end;
2 : begin

* Xl:=X-Xrrax- 1;
Y1:'Y- 1-,
X2: =X-Xntax;

Y2:=Y;
end;

3 begin
Xl: =X-Xmax.
YI:=Y-- 1;
X2:=X-Xmaz-- 1:
Y2: = Y

end;
4begin

Xl:=X-Xmaxc:
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Y1:=Y;
X2:=X-Xmax-s 1;
Y2:=Y+ 1;

end;
end; ~', CASE 4)

5 :case Pointer of
I :begin

XI:.=X+ Xmaz

end;
2: begin

X1:=X+ 1;
4. Y1:=Y;

Y2:=Y-1;
end;

3: begir
X1:=X+sXmax;
Y1:=Y;
X2:=X+ Xmax;
Y2: =Y-1;

end;
V~4: be&i

X1:=X;
Yi:=Y+ 1;
X,=~X+ 1;
Y2:=Y-1;

end;
5 : begin

X1:=Xmax-t X;
Y1:=Y;

end;
end; ('CASE 5

6 :case Poinwe of
1be&m

XI:=~X-.Xmax;
Yi:=Y,
X2:=X-~Xmaxz

e2: =Y- 1;

2: begin
xl:=X
YI:=Y-I- I
X2:=X-. 1;
Y2:=Y;

end;
3-begin

X1:=Xmax- X-I;

X2:=Xmax-4 X;
Y2:=Y;

end;
4.begin

Xl:-=X- 1;
Yl:=Y;

X2: = X;



Y2:=Y+ 1;
end;

5: begin

Y1:=Y-1;
X2:=Xmnx+X-1,
Y2:=Y;

end;
6 6begin

Y1:=Y-1;
X2:=X-1;
Y2:=Y;

end;
7: begin

XI:=Xmex+X;

X2:=Xmax+X-1;
Y2:=Y-i;

end;
8: begin

Xi:.X-'-I;
Y1:=Y;
X2:=X;
Y2:=Y-1;

end;
* ~end: (* CASE 6 ~

7 :cawe Pointer of
I :begin

X1:=X+ Xzax-1;
YJ:=Y;

end.
2: begin

Xi: =X- 1;
Y1:=Y;
X2: =~X;
Y2:ý:Y- 1;

4 end.
S : begin

XI.=Xmnax-,-X-1.
Y 1: --Y- 1.
X2:=Xmnax- X-i.
Y2: =Y;

end:
4 begin

X2 =X-1.
V2. =Y,

end:
5 : begin

XI.=Xanax. X-I.

end,
end: (* CASE 7

a casw Pointer of



X1:=X+Xznax;
Y 1:=Y-1;

XI:=X+ 1;
Y1:=Y;
X2:=X,
Y2:=Y-1;

end;

X1:=X+-Xmax;
YI:=Y-1;

end;
end; (* CASE 8)

9-case Pointer of
I1: begin

XI:=X+ Xmax-1;
Y1:=Y-1;

end;
2: begin

X1:=X;
Yl:=Y- 1;
X2:=X-1;
Y2:=Y;

end;
3: begin

X1:=Xmaix X;
Y 1:=Y-I;
X2:=Xmax+ -X-1;
Y2:=Y- 1:

end;
4begin

X1:=X-- I;
YI:=Y;
X2:=X;
Y2:=Y-1;

end:
5 begin

X1:=X+ Xmaz;
Y 1:=Y- 1;

end;
end; (* CASE 9)

10 case Pointer of
1.3: begin

XI:=X--Xmax-1;
V ~Y 1: =Y- 1:

end;
2 begin

Xl:=X
Y 1: Y- 1;
X2:=X-1;
Y2: =Y

end;
end, (* CASE 10

end; (CASE POSITION
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if InDegreeMatrix[Nm,FromGridToMatnx;Xl,Y1j* - -1 then begin
LastEdge:=tue,
CoustructTree(X ,Y.Exi&•Way);

end;
if X2 <> 0 then begin

if InDereMatrixiNm,FromGridToMatrixiX2,Y211=-I then be&in
LastEdge=•true;
CoustructTree(X2,Y2,Exis Way);
ExistWay:=false;
LastEd•e:=trse
CoustructTree(X2,Y2,Exi Way);

end
else begin

ExistWay:=false;
LastEdge: =true;
ConstructTree(X2,Y2,ExistWay);

end;
end
else begin

ExiskWuy: =fale,
LastEdge:=true;
ConstructTree(X2.Y2,ExistWay);

end;
end: (* PROC )

SearchPath searchs all possible paths from the root node to the other
nodes in the directed graph. This procedure also links the grwoth nodes
on the paths to the conoturing tree by calling the procedure
"ConstructTree"

procedure SeachPath(Situation,X,Y,Nm,Pt:integer);
var

(* Used to reorder the edges on the list in a counterclockwise )

i :integer;,

STakes value "0" if the node is the root node of the trec,

otherwise "1")

1 0.1:

Num integer;

(* Edge pointer points the edge number of the edge
to be checked )

P .nteger

( Takes true if the edge is outward, otherwise false )

Extst Way - boolean;
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be&i

if InDevr•MatrixiNm,FromGrkiToMmxrixiX.Y]] = -1 then bein

Nm:=FromGridToMatrix[X,Y];
Exis'Way := true

end
else ExistnWay:=fal;
if ( CheckSNodevFromGridToMalwxeX,Y=l) ad (ExistWay) then begin

Constr•tTree(X,Y,Exist Way);

P PSnaredEdge(Situioa,X,Y,Nm,Pt ,xistWay);
end
else begin

ConstructTree(X,Y,ExistWaoc);
if ExistWay or 3rst then

if irust then bPin

(* Initial condition

P:=O0;
I "= 1,

ruet:= false;
end
else begin

1 := 0;

(* Starting valTe of the pdge number pointer)

P.= Pt

end:

Num:=Nm;

(* Possible situations procedure can go at calling time *

casm Situation of
1: begin

for i :=I to 1--2 du, begin

putting the edges or the list in a counterclockwise
order "

if P= 3
then P := I

else P = P- L,

(* If the last edge is checked, then "!.astEdge" return% true "

if i = I - 2 then LastEdge = true;
caw. P or

("The first possible path using edge n,:~e n

Situation I *)

I if I X - 1) = Xr.ax (* First possible route from "I" "

114



then SearchPath(3,X + 1,Y,Num,S)
else SearchPath(2,X+l,Y,Num,5);

('The second possible path using edge number I in
Situation 1 *)

2 : SearchPath(4,Xmax-,-X,Y,Num,l);(" Second possible route
from situation "1" *)

( The third possible path using edge number 1 in

3 if (Y+I) = Ymax (* Third possible route from situ."1*)
then SearchPath(8,X,Y+ ',Num,l)

else SearchPath(5,X,Y+1,Num,I);
end; (* CASE')

end; (*FOR')
end;

2: begin
for i := 1 to 1+4 do begin

if P= 5
then P:= I

else P := P-- I;
if i = I - 4 then LastEdge:= true;
case P of

I: if( Xil) = Xmax
then SearchPath(3.X- l.Y,Nun,3)

else SearchPath(2,X+l,Y,Num,5) ;
2 SearchPath(4,Xmax+X,Y,Num,l);
3 : if (Y+i) =Ymax

then SearchPath(9,X,Y-1-l,Num,3)
else SearchPathb6,X,Y+1 .Num,7);

4 SearchPath(4,Xmax+X 1,Y,Num.2);5. 'x-1) = I
then SearchPath( I,X- 1,Y,Num, I)

else SearchPath(2,X-1,YNum,l)
end; (* CASE')

end; (* FOR')
end;

3: begin
for i := I to 1-2 do begin

if P= 3
then P := I

else P := P- 1:
if i = 1 - 2 then LastEdge := true;
case P of

I if ( Y- 1) = Ymax
then SearchPath(IO,X,Y-1 1,Num,3)

else SearchPath(7,X,Y-l.Num,5) :
2 Search Path (4,Xmax + X- 1,Y,Num.2);
3 if( X-1) = I

then Search Pat h(,X-1,Y,Num, 1)
else SearchPath(2,X- 1,Y,N um, 1)

end: (* CASE')
end; ,' FOR *)

end;
4: begin
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for i :=Ito 1+3 do begin
ifP= 4

then P := 1
else P := P+ 1;
if i =I + 3 then LastEdge := true;
case P of

I : case Find(X-Xmax,Y) of
1 : SearchPath%(1,X-Xmax,Y,Num,2);
2: SeazckPatb(2,X-Xwa~x,Y,Num,2);

. --wPathi(5,X-Xmax,Y,Num,4);
6: SearchPath(6,X-Xmax,Y,Nt~m,2);

end , (*'CASE *)
2 : case Find(X-Xmax+1,Y) of

2: SeachPath(2,X-Xmax-t-1,Y,Num,4);
3.'ahahp,-mxI,,u,)

6. SearchPath(SX-Xmax+1,Y,Num,4);
6: SearchPath(7,.X-Xm~ax+1,Y,Num,2);

end ;(* CASE *)
3 :case Find(X.Xmax+-1,Y+1) of

6 - SeazchFath(6,X-Xmax+1,Y+ 1,Num,6);
7: SearchPath(7 X.Xmnax-s1,Y+ 1,Num,4);
9: SearchPath(9,X.Xmax+1,Y-'-1,Num,2);

10: SearchPath( 1O,X-Xmax+ I,Y~-1,Num,2);
end; (*'CASE'*)

4 'came Find(X-Xmax,Y+1) of
5: SearchPath(5,X-Xmax,Y-s-,Num.2);
6: SearckPath(6,X-Xznax,Y+1,NumS);
8: SearciaPa~h(S,X-Xmax,Y-t-,Num,2);

- 9: SearchPath(9,X-Xmax,Y-+1,Num,4);
end (* (CASE)

end; (* CASE '
end; ('FOR '

end;
5: begin

for i I Ito 1+4 do begin
if P= 5

then P := I
else P:= P+ 1;
if i =1I- 4 then LastEdgo-:= true;
case P or

I : if (Y -i 1
then SearchPath(l,X.Y-!.Num,3)

else SearchPath(5.X,Y-l,.Num,5) ;
2 . SearchPatb(4,Xmax-X,Y-1,Num,4);
3 . tf ( X - I) Xmax

then SearehPaxh(7,X+ 1,Y.Num,3)
else SearrhPath(6,X-1- ,Y,Nam,5);

4 Se arcf.Path(4,Xmax-X,Y.NumI);
5 if ( Y I) = Ymax

then SearchPath(8,X.Y-4I,Num.l)
else SearchPath(5,X,Y+ 1,NJum, 1)

end: (* CASE)
end: ('FOR

end;
6: begin

for i I= to 1- 7 do begin



if P= 8
then P := 1

else P: P+ 1;
if i = I + 7 then LastEdge := true;
case P of

I1: if1 tX + 1 ) =XMax
then SearchPath(7,X+ 1,Y,Num,S)

else SearchPath(6,X-t-1,Y,Num,5) ;
2. SearchPath(4,Xmax-t-X,Y,Num,l);'

3 -if I Y + I1) =Yrnax
then SearchPath(9,X,Y+1,Num,3)

else SearchPath(6,X,'YL+,Num,7) ;
4 :Search.Path(4,Xmax+X-1,Y,Num,2);
5 :if( X - 1 ) =1

then SearchPath(5,X-1,Y,Num,3)
else SearchPath(6,X-1,Y,Num,1) ;

6: SearchPath(4,X nax+X-1,Y-1,Num,3);
7 : if ( Y - 1 ) =1

then SearchPath(2,X,Y-1,Num,3)
else SearchPath(6,X,Y-1,Num,3) ;

8 : SearchPath(4,Xmax+X,Y-1,Num,4);
end; (* CASE '

end; (SFOR)

end;
7: begin

for i I ito 1+4 do begin
if P= 5

* then P: I1
else P := P+ 1;
if i =I + 4 then LastEdge :=true;

case P of
I41 if ( Y -1 = Ymax

then SearchPath(1O,X,Y-i-1,Num,3)
else SearchPath(7,X.Y+1,Num,5);

2 :SearchPath(4,Xmax-X-1,Y,Num,2);
3: if ( X - 1) 1

then SearchPath (5,X- 1,Y,Num,3)
else SearchPa~th(6,X-1,Y,Nnim,1);

* ~4 : SearchPath(4,Xmax- X-1,Y-1I,Num,3);
5 5- if ( Y - 1 ) = I

then SearchPath(3.X,Y-l,Num,1)
else Search Path (7,X. Y-1,Nu in, 1);

end: (*' CASE)
end; (FOR)

end;
8. begin

for i I to 1- 2 do begin
* if P= 3

then P:
* . elsc P:= P-'-1;

if i = I -&2 then LastEdge :=true;

case P of
I1: if ( Y - I) I

then Search Path (I .X,Y-1, Num.3)
else Search Path (5, X.Y- I,Nu m,5);

2. Search Path (4,Xrnax -X,Y- I.Num,4).
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3: if ( X.1 Xrnax
then SearchPath(IG,X+1,Y,Num,l)

else SearcbPath(9,X+1IY,Num,1)
end; (* CASE)

end; (FOR)
end;

9: begin
for i I Ito 1+4 do begin

if P= 5
then P: I1

elme P:= P+ 1;
if i I -,. 4 then LastEd~ge :=true;
case P of

I1: if ( X .1) =1
then SearchPath(8,X-1,Y,Num,3)

else SearchPa~th(9,X-1,Y,Num,5);
2. St-archPath(4,Xmax+X-1,Y-1,Num,3);
3 if ( Y- 1 ) 1

then SearchPath(2,X,Y-1,Num,3)
N else SearchPath(6,X,Y-1,Num,S);

4 :SearchPath(4,Xmax+X,Y-1,Num,4);
5 :if ( X + 1 ) = Xmax

then SearchPath( 10,X-+1,Y,Num,1)
else SearchPath(9,X±1,Y,Num,1)

end; (* CASE'
end; ('FOR)

end;
10: begin

for i I ito 1+2 do begin
if P= 3

then P:1
else P := P4. 1:
if i = I1-2 then LastEdge := true;
case P of

1: if ( X - 1)I
then SearchPath(S,X-1,Y,Num,3)

else SearchPath(9,X-1,Y,Num,5);
2 :SearchPath(4,Xmax-*X-1 ,Y- 1,Nuni,3);
3: if ( Y - 1 ) =1I

then SearchPath(3,X,Y-1,Num,1)
else SearchPath(7,X,Y-1,Nuim,1)

end; (* CASE)
end; (* FOR '

end;
end:

end (' IF)
p ~end; (* ELSE IF)

end ; 'PROC)

Procedure "CreateTree" -continued-

begin
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T:=O;

for i:=1 to limit
do CheckNode[i]:=0;

for i:=1 to limit do begin
if InDegreeMatrix~i,iJ = 0 then begin

(* Root is recognized in In Degree Matri )

state := 1;
T:=T+I;
first := true;
second := false;

(* Coordinate of root *)

XI Coord[ij.X;
YI := Coord[i].Y;
SearchPath(Find(XI,Y1),XI,Y1,i,0);

end; (' IF *)
end; (* FOR )
Head .Child:= nil;

end; (* PROC 4)

*(* .... > SECTION 3: INSERTION DRAWING COMMAND ON NODES <. .

In this function, first the coordinates of the edge which exists
in the contouring tree are found. Second the coordinates of the edges
which should exist in the contouring tree for continuity is found.
if those coordinates are the same, then there is no split edge problem.
Otherwise there is.

function Adjacent (Tree :PointerType):boolean;
var Xr.Xt,Xs,Yr,Yt,Ys : integer;

Root PointerType;
begin

Root := Tree;

(* Finding the root pointer of the given node )

while ( Root = Root ^pred '.Sibling ) do
Root := Root" pred:

Root Root^ .pred:

( Coordinates of the root node of the given subtree )

Xr := Coord!Root ^.Data* X;
Yr .= CocrdiRoot Data: Y;

( Coordinates of the given node as a parameter )
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Xt CoordlTree .DataI.X;
Yt CoordJTree .Datal.Y;

(* Coordinates of Sibling node of the given node*)

Xs := Coord[Tree .Sibling '.Dataj.X;
Ys Coord[Tree .Sibling -.Datal.Y;
Adjacent := false;
case Find(Xr,Yr) of

(* Situations where the root nose can reside *)

I : begin

"(* situations where Sibling node can reside *)

case Find(Xt,Yt) of
2,3. if ( Xs = Xmax÷Xr ) and (Ys=Yr)

then Adjacent := true;
4 :if (Xs = Xr) and (Ys = Yr+I)

then Adjacent := true;
5,8 CA;

end; (* CASE )
end; (* CASE 1 *)

2 :begin
case Find(Xt,Yt) of

2,3: if (Xs=Xmax-t Xr) and (Ys=Yr)
then Adjacent:=true;

4 :begin

if (Xt-Xmax) = Xr then begin
if (Xs=Xr) and (Ys=Yr+l)

then Adjacent:=true;
end

else if (Xs=Xr-1) and ( Ys=Yr)

then Adjacent:=true;
end; (* CASE 4 *)

6,9: if ( Xs=Xmax+Xr-1) and (Ys=Yr)
then Adjacent := true;

end; (' CASE')
end;' (* CASE 2 *)

3 begin
case Find(Xt,Yt) of

7,10. if (Xs=Xmax÷Xr-1) and (Ys=Yr)
then Adjacent:= true;

4 :if (Xs=Xr-1) and (Ys=Yr)
then Adjacent:= tru-:

1,2
S end; (S CASE')

"end; (* CASE 3 )
4 begin

if( Yr - Yt ) then begin
if ( Xr - Xmax) = Xt then begin

* if (Xs=Xt- 1-) and (Ys=Yt)
then Adjacent := true;

end
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else if (Xs=Xt) and (Ys=Yt-1)
then Adjacent := true;

end
else begin

if (Xr-Xmax)=Xt then begin
if (Xs=Xt) and (Ys=Yt-1)

then Adjacent := true;
end
else if (Xs=Xt-1) and (Ys=Yt)

•then Adjacent true;
end; ('IF ELSE*)

end ; (* CASE 4 ')
5: begin

case Find(XtYt) of
1,5: if (Xs=Xmax+Xr) and (Ys=Yt)

then Adjacent := true;
4 begin

if Yt < Yr thea begin
if (Xs=Xr-,1) and (Ys=Yr)

. then Adjacent := true;
end
else if (Xs=Xr) and (Ys=Yr-,-I)

then Adjacent := true;
end;

6,7: if ( Xs=Xmax-Xr, and (Ys=Yr)
then Adjacent := true;

8"
end; (* CADE *)

-* end; ('CASE 5
6: begin

case Find(Xt,Yt) of
5 : if (Xs=Xmax--Xt) and (Ys=Yt-1)

then Adjacent .= true;
7 . if (Xs=Xmax-Xr) and (Ys=Yt)

then Adjacent .= true;
4 : begin

if Yt < Yr then begin
if (Xt -Xmax) < Xr then begi;

if (Xs=Xr)and (Ys=Yr-1)
then Adjacent := true;

end
else if (Xs=Xr 1) and (Ys=Yr)

then Adjacent := true:
end
else begin

if (Xt-Xmax) < Xr then begin
if (Xs=Xr-I) and (Ys=Yr)

then Adjacent "= true
end
else if (Xs=Xr) and ( Ys=Yr- 1)

then Adjacent := true;
end ; IF FLSE

end; ('CASE )
2 : if (Xs=Xmax-Xt) and (Ys=Ytl

then Adjacent := true;
9: if( Xs=Xmax- Xt-l) and (Ys- Yr)
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then Adjacent := true;
6 :begin

if ( Xt > Xr ) and ( Yt = Yr ) then begin
if ( Xs = Xmax+Xr) and I Ys =Yt)

then Adjacent := true;
end
else if ( Xt = Xr ) and ( Yt > Yr) then begin

if ( Xs = Xmax-t-Xt-1 ) and ( Ys = Yr)
then Adjacent := true;

end
else if ( Xt < Xr ) and ( Yt Yr ) then begin

if ( Xs = Xmax+Xt ) and (Ys = Yt-I)
then Adjacent := true

end
else if ( Xs = Xmax+Xt ) and ( Ys = Yt)

then Adjacent := true
end ; (* CASE*)

end; (* CASE 6')
end; (* CASE 6*)

7: begin
case Find(Xt,Yt) of

7,10 : if ( Xs = Xmax-t-Xt-1 ) and (Ys=Yr)
then Adjacent := true;

4 :begin
if( Yt =Yr ) then begin

if (Xs=Xr-1) and (Ys=Yt)
then Adjacznt := true;

end
else if ( Xs=Xr ) and (Ys=Yt)

then Adjacent := true;
end;

5,6 : if ( Xs = Xmax-Xt) and ( Ys=Yt-I)
then Adjacent := true;

3 :;
end; ('CASE')

end;(* CASE 7 *)
8 begin

case Find(Xt,Yt) of
1,5" if ( Xs = Xmax-Xr ) and ( Ys = Yt)

then Adjacent := true;
4 :if(Xs= Xr+l)and (Ys=Yr)

then Adjacent : true;
9,10;

end; (* CASE *)
end;(* CASE 8 *)

9: begin
case Find(Xt,Yt) of

8,9 :if (Xs=Xmax- Xt) and (Ys=Yt-l)
then Adjacent :zý true.

4 :begin
if j Xt-Xmax ) < Xr then begin

if( Xs=Xr) and (Ys=Yt)
then Adjacent := true;

end
else if (Xs = Xr- 1) and ( Ys=-Yr

then Adjacent := true-
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end ( case')
6,2: if ( Xs = Xmax÷Xt ) and ( Ys = Yt)

then Adjacent := true;
10 :;

end; (* CASE')
end;(* CASE 9 )

10 begin
case Find(Xt,Yt) of

8,9: if ( Xs = Xmax--Xt ) nd ( Ys =Yr - I)
then Adjacent := true;

4 :f(Xs = Xr) and ( Ys =Yr-1)
then Adjacent := true;

3,7
end; ('CASE')

end;(* CASE 9
end; (* CASE')

end; (* FUNC ')

This procedure inserts drawing commands by way o! a pre-order traversal of
the directed tree, placing a setpoint command on each node that is a new
lowest value for the tree. Procedure also takes care of the split edge
problem.

procedure PutDrawingCommand;
var

Head: HeadersType;
Smaller : real;

Traverse the contouring tree in preorder, placing drawing commands
onto nodes and manipulating the split edge problem.

procedure PreOrderPENtravivar Tree: Pointek-Type);
var Temp : PointerType;
begin

if Tree < > nil then begin
if Smaller > Tree .Dnsty

then begin

( Putting Setpoint to the node having the neu lowest densivy vnve ')

Tree'.Draw-= !,

Smaller :- Tree Dnsty:
end

else if Tree Sibling < > nil then begin

( If SPLIT EDGE exist. ,

if not Adjacent(Tree)
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then Tree'.Sibling" Draw:= 1;
end;
Temp:= Tree" Child;
PreOrderPENtrav(Temp);
Temp:= Tree .Slblinr,
PreOrderPENtrav(Temp);

end; (' IF *)
end; * PROC *)

"PutDrawingCommand" - continued. -
,%

A begin
Head:=Hea4ers;
while Head <z> nil do begin

with Head^ Tree^ do beein
"Smaller:= NodeDensity;Coord:Datai.X,CoordiDataN.YI;
Draw =2;

e. end; (* WITH')
PreOrderPENtrav (Head .Tree);
Head:= Head .Child;

end (* WHILE )
end; (*PROC )

V(====> SECTION 4:PREORDER TRAVERSEOFTREES

Output all child nodes of the given father pointer.

procedure WnteDesce nd (Tree:PointerType);
"var i,x,y,D : integer,
begin

x .= Coord'Tre" Data .X;
y .= Coord'Tree-.Data .Y;
D = Tree' Draw;
if x > ( Xnmax - Xbese ) then

wrzte(• FATHER NODE X '.(x-Xmax-0.5)4:2.' Y '.(y-0.5):4:2)

else
write(- FATHER NODE X '._-:4:2.' Y = ".'4 2)"

%.rite(' DENSITY= ".N.'vdDensity x-Xbase.y-Yba~se 5 2);
writeln(' DrawCem. '.D:2):
writeln:writet'Children ",
Tree =Tree" Child:
while Tree - > nil do begin

x Coord[Tree Datal.X:
y CoordTeee Data..Y:
if = 4 then begin

i; x > (Xrnax-Xbase) then

124



writeln('X= ',(x-Xmax±0.5):4:2," z ".(y 0.5):*:2,' )
else writeln('X= ',x:4:2,' Y = ',y:4: 2 ,'. ";
write(' ':10);
i:= 1;

end
else begin

if x > (Xmax-Xbase) then
wti*t.-1'X= ',(x-Xmax-'0.5):4:2,' = ',(y--0.5)42,'

else write('X= ',x:4:2,' Y = ',y:4:2,'[
i:=i +

end;
Tree := Tree- .Sibling;

end;
writeln('= ==');writeln;

end ; ( PROC')

Procedure travres the given contouring tree in pre-order and outputs
information about all nodes with their child nodes.

procedure PreTrav(Tree : PointerType);
begin

if Tree < > nil then begin
WriteDescend(Tree);
PreTrav(Tree .Child);
PreTrav (Tree .Sibling);

end;
end; (* PROC )

Traverse all the trees and output information about the nodes of the
contouring trees.

procedure WriteTreesinPreorderForm;
var i integer;

Head HeadersType;
begin

Head - Headers:
i:- =l:

writeln;writeln(TRAVERSE TREES IN PRE-ORDER':35);writeln;
while Head - .- nil do begin

writeln.writeln(. "* ':20,i:.!,'TH TREE .*****)... writein;

PreTrav(Head ^.Tree);
Head. -Head^ Child:
i:=i- I.

end;
end; ( PROC ")

"(--0 = > SECTION 5: TAKING A SLICE OF CONTOUR AT GIVEN CONTOUR LEVEL <4
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Shift the base of the coordinate to what the user wants it to be.

procedure UseBaseCoord;
I-" var i: integer;,

begin
for i:=1 to limit do begin

Coordii..X Coordil.X -t Xbase;
Coord~i,.Y := Coordli].Y + Ybase;
FromGridToMatrixICoordiil.X,Coord[ii.Y- i;'

end;
end; (* PROC *)

If the root of the tree belongs to situation 6, then the contour lines
should be completed, otherwise open contour lines exist. Function
returns true for the complete contour lines, false for the open contour
lines.

function IsCompleteDrawing(Root:PointerType;X,Y,XI,Yl-real):boolean;
begin

IsCompleteDrawing: =false;
if Find(Coord;Root '.Datai.X-Xbase,CoordIRoot-.Dataý.Y- Ybase) 6

then if ((X<>Xmax) and (Y<>Ymax)) or
((Xl<>Xmax) and (Yl<>Ymax))

then IsCompleteDrawing:=true;
end;

Give -he coordinates and drawing commands of the contour lines
at given contour level.

procedure ResultAtGivenContourLevel;
var i.L : integer;

X,Y,Z:real;
Head: HeadersType;
Root:PointerType:
first.unwritten :boolean;
PreCrd:record

X.Y.Density:real:
D :0..2:

end;
Crd : record

X,Y:real;
end;

EqList:array'I.-.201 of record
Xr,Xs,Yr,Ys:real;
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end;

If the equivalued edge at the contour level exists, then function returns
true, and issues a coordinate and drawing instruction pair for that

var i :mteger,

*if 1 Root -.Dnsty =Subnode ^.Dnsty ) and
% (Root'.Dnsy =ContourLevel ) then begin

found := false;
S= 1;

while ( not (found) ) and ( i<=L ) do begin
with EqListlil do

5. if (((Xr--Root^.Xval) and ( Yr--Root-.Yval)) and
((Xs=Subnode-.Xval) and (Ys=Subnode'.Yval))) or
(((Xs= Root .Xval) and ( Ys=Root .YvaI)) and
((Xr--Subnode' .Xvai) and (Yr--SubnodeK .Yval)))
then found .=true;

f ~end; (* WHILE)
if not found then begin

with EqListjLj do begin
Xr-=Root^.Xval;
Yr.=Root^.Yval;
Xs:=Subnode .Xval;
Ys:=Subnode ^.Yval;

end; (' WITH)
with RooC do begin

if rust then begin
X:=Xval;

* first:=false;
end;
writeln(XvaJ:8:4,Yval:8:4,Z:8:4,' 1':8);

end;
with Subnode ^do begin

PreCrd.X:= Xval-
PreCrd. Y: = Yvd
PreCrd .D:-=0;
PreCrd. Density:= Dnsty;

end; (* WITH)
end; (* IF *)
Equivaiued Edge:= true

4 end
else Equivaiued Edge:= false;

end; (~FCNC ~
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(e**e*****eaeee*S***e**elaaoalae*.*aalaleea SI1 . SS11*tS*1g1e1s111tgIaeO**ateSO**

This function is used to eliminate duplicate coordinate and drawing coomands.

function PreviousCrdCont(X,Y,DENSITY:real;Draw:integer):t-oolean.

var found:booleaa;
i:integer;

begin
found:=false;
PreviousCrdCont:= true;
if( PreCrd.Dessity = DENSITY)

and ( not ( ((X=PreCrd.X) and (Y=PreCrd.Y))

and (Draw PreCrd.D))) then begin
i := 1,

while ( not (found)) and ( i<=L ) do begin
with EqListlij do

if (((Xr=PreCrd.X) and (Yr=PreCrd.Y)) and
((X=X) and (Ys=Y))) or
(((Xs=PreCrd.X) and (Ys=PreCrd.Y)) and
((Xr=-X) and (Yr=-Y)))
then found := true;

end; (* WHILE )
end
else if ( ((X=PreCrd.X) and (Y=PreCrd.Y))

and (Draw = PreCrd.D))
then found:=true;

if not found then begin
PreCrd.X:=X;
PreCrd.Y:=Y;
PreCrd.D:=Draw;
PreCrd.Density:= DENSITY;
PreviousCrdCont:= false;

end;
end;

(*****i**u**•*SO*S eS*O**Se**Oe***SO*e*esa**S*eew*t ****S•O •** s e ow *O*

Output the coordinates of contour lines at given contour level.

procedure Coord AtGii.en Level(Tree:PointerType);
var Xl ,X2,Y1,Y2,Ratio:real;

begin
if Tree < > nil then begin

Root :=Tree:
while R(ooT= Root - .pred .Sibling ) do

Root = Root .pred;

Root .= Root .pred;
d EquivaluedEdge(Root.Tree) then begin

CoordAtGivenLevel(Tree- Child);
CoordAtGivenLevel(Tree" Sibling);
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end
else begin

if Root - .Dnsty > ContourLevel then begin
if (Tree -. Dnsty =ContourLevel) then begin

with Tree^ do begin
if Child <> nil then begin

if EquivaluedFdge(Tree,Child) tben b)eginV.CoordAtGivenLevel(Child ^.Child);
Coord-At~ienLevel(Child -.Sibling);

end
else if not PreviousCrdCont(Xval,YvaJ,Dnsty.Draw) then

if frust then begin
X:=Xval;
Y:=YvaI;
first:=false;

end;
writeln(Xval:8-4,Yval:8:4,Z:8:4,Dra* :8);

end;
end
else if not PreviousCrdCont(Xval,YvaI,Dnsty,Draw) then

begin
if first then begin

X:=Xval;
Y:=YvaI;
pfirst: =faJse;

end;
writeln(Xvai:8:4,YvaJ:8:4,Z:8:4,Draw:8);

end;
end; (* WITH)

end
else if (Tree ^.Dnoty < ContourLevel) thev be~gin

(LINEAR INTERPOLLATION)

Ratio:=(Root -.Dnsty-ContourLevel) /(Root ^.Dnsty-Tree -. Dnsty);
Xl : Root ^.Xval;
Yl : Root -Yval;
X2 :=TreeC.Xvai;
Y2 :=Tree ^.Yval;
if (XI-X2) > 0

then X1:=X2-t(XI.X2)*(l-Ratio)
else XI:=Xl+(X2.XI)'Ratio;
if (YI-Y2) > 0

then YI:=Y2-,-(YI-Y2)*(l-Ratio)
else Yl:=YI+(Y2-Yl)*Ratio;
if first then begin

X:=XI;
Y:=Yl;
first:= raise;

end;
('Elimination of consequence "setpoint" O

*if TreeC.Draw =I then begin
Crd.X :=XI;
Crd.Y :~Yl:

* unwritten ir ue;
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.4 end
else be&i

if unwritten then writeln(Crd.X:8:4,Crd.Y:8:4,Z:8:4,'1':g);
if not PreviousCrdCont(XI,Yl,Trte ^.Dnsty,Tree -.Draw)

then writeln(Xl:8:4,Yl:8:4,Z:8:4,Tree .JDraw:8);
unwritten :=false;

end;
end

6 else CoordAtG ivenLevel(Tree ' .Child);
CoordAtGivenLevel(Tree '.Sibling);

end;(I1F*)
end;(* ELSE)

end; (IF *)
k end; (PROC)

Procedure "ResultAtGivenContourLevel".-continued-

begin

while not eof(InpFile) 4o begin
readln(InpFileCons,3ourLevel);

Head:=Headers;
while Head < > nil tko begin

writein;
writepln(i:4,'th',' Tree rooted at valdue ',Head - Tree - .Dnsty-6:2);
writein;
writeln( 'Leves':9,CoatourLevel:5) ;writeln;
writeln('X' O.'Y':8.'Z':8,'D'.10);writein;
frst:=%rue;
unwritten :=false;
CoordAtGivenLevel(Head' - Tree - .Child);
if unwritten then wrieien(Crd.X:8:4,Crd.Y:8:4,Z:8:4,'1':8);
if bsCompleteDrawing(Head . Tree,X,Y,PreCrd.X,PreCrd.Y)

then if (PreCrd.X <> X) or (PreCrd.Y <> Y)
then writeln(X:8:4,Y:8:4,Z:S:4,'O':8);

PHead:= Head^ Child;
i:=i-4 1;

end:(* WHILE)
end: (* WHILE)
writein;
write('Colamn D is the drawing command. i.e. I =SETPOINT, 0 =DRAWTO.')-

end;(* PROC)

begin

ReadData;
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WritelnpData;
- CreatelndMatrix;

Write judMatrix;
* CreateTree;

PutDrawingCommand;
UseBaseCoord;
ResultAtGivenContourLevel;
WriteTreeslnPreorderForm;

end.



APPENDIX B

. ROGRAM OUTPUT FOR THE 2X2 SUBGRID
4

*** * DENSITY VALUES OF NODES IN GRID *

X 1 2 3

Y -->1- 150.000 40.000 70.000

2- 30.000 60.000 0.000

Locations Of Average Density Values Start After X = 2

INDEG REE-MATR IX

1) 0-1 0-1-1
2)03000
3) 0-1 1-1 0
4) 00030
5) 0-1-1-1 1

Ith Tree rooted at value 150.00

Level 50

X Y Z D

2.9091 2.0000 0.0000 1
2.8333 2.1667 0.0000 0
3.0000 2.5000 0.0000 0
2.6667 3.0000 0.0000 1
2.2500 2.7500 00000 0
2.0000 2.8333 0.0000 0

Ith Tree rooted at value 150.00

Let-el 100

X Y Z D

2.4545 2.0000 000000 1
2.3125 2.3125 0.0000 0
2.0000 2.4167 00000 0

Column D is the drawing command. i.e. I = SETPOINT, 0 = DRAWTO.

TRAVERSE TREES IN PRE-ORDER

132



ITH TREE *******

FATHER NODE X = 2.00 Y = 2.00 DENSITY= 150.00 DrawCom: 2

Children :X= 3.00 Y = 2.001 X= 2.50 Y = 2.501
X= 2.00 Y = 3.001 ---

FATHLER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 DrawCom: 1

Children:===

FATHER NODE X = 2.50 Y = 2.50 DENSITY= 10.00 DrawCom: 0

Children :X= 3.00 Y = 2.001 X= 3.00 Y = 3.001 X= 2.00 Y = 3.001

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 DrawCom:. 0

Children.

FATHER NODE X = 3.00 Y = 3.00 DENSITY= 60.00 DrawCom: 0

Children :X= 3.00 Y = 2.001 X- 2.00 Y = 3.001

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 DrawCom: 0

Children:===

FATHER NODE X = 2.00 Y = 3.00 DENSITY= 30.00 DrawCom: I

Children:===

FATHER NODE X = 2.00 Y = 3.00 DENSITY= 30.00 DrawCom: 0

Children:===

FATHER NODE X = 2.00 Y = 3.00 DENSITY= 30.00 DrawConm: 0

Children:===
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APPENDIX C

PROGRAM OUTPUT FOR THE 3X3 GRID

** **** DENSITY VALUES OF NODES IN GRID *

X--> 1 2 3 4 5

Y ->- 150.000 40.000 30.000 70.000 37.500

, 2- 30.000 60.000 20.000 82.500 35.000

3- 190.000 50.000 10.000 0.000 0.000

Locations Of Average Density Values Start After X 3

INDEG REE-MATRIX

1) 0-1 0-1-1 0 0 0 0 0 0 0 0
2) 0 3 0 0 0-1 0 -1 0 0o0 00
3) 0-1 2-1 0 0-1-1-1 0 0 0-1
4) 0005000000000
5) 0-1-1-1 1 0 0 0 0 0 0 0 0
6) 0 00 0 02-10 00 00 0
7) 0 0 0 0 0 0 4 0 0 0 0-1 0
8) 0 0 0 0 0-1-1 2 0 0 0 0 0
9) 0 0 0 0 0 0 0 0 3 0 0-1-1

10) 0 0 0-1 0 0 00-10-1 0 0
11) 0 0-1-1 0 0 0 0-1 0 1 0 0
12) 0 0 0 0 0 0 0 0 0 0 0 3 0
13) 0 0 0 0 0 0-1 0 0 0 0-1 2

Ith Tree rooted at value 150.00

Level 50

X V Z D

2.9091 2.0000 0.0000 1
"2.8333 2.1667 0.0000 0
3.0000 2.5000 0.0000 0

3 2222 2.7778 0.0000 0
32500 3.0000 0.0000 0
3w2000 3.2000 00000 Z)
3.0000 4.0000 0.0000 0
2 6667 3.0000 0.0000 1
2.2500 2.7500 0.0000 0
2.0000 2.8333 0 0000 0

2th T-ee rooted at value 190.00
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Level 50

X Y Z D

2.0000 3.1250 0.0000 1
2.1905 3.1905 0.0000 0
2.6667 3.0000 0.0000 0
3.0000 4.0000 0.0000 1
3.0000 4.0000 0.0000 0

lth Tree rooted at vaiae 150.00

Level 100

x Y z D

2.4545 2.0000 0.0000 1
2.3125 2.3125 0.0000 0
2.0000 2.4167 0.0000 0

2th Tree rooted at value 190.00

Level 100

X Y Z D

2.0000 3.4375 0.0000 1
2.4186 .5814 0.0000 0
2.6429 4.0000 0.0000 0

Column D is the drawing command, i.e. I = SETPOINT. 0 = DRAWTO.

TRAVERSE IN SECOND FORM

"2"** ITH TREE *

FATHER NODE X = 2.00 Y 2.00 DENSITY= 150.00 DrawCom: 2

Children :X= 3.00 Y = 2.001 X= 2.50 Y = 2.50
X= 2.00Y = 3.00 -

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 DrawCom: I

Ch-ldren :X= 4.00 Y = 2.001 X= 3.50 Y = 2.50

FATHER NODE X = 4.00 Y = 2.00 DENSITY= 30 MO DrawCom I

Children :X= 4.00 Y = 3.00' -- --

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20 00 DrawCom. I

Children :X= 4.00 Y = 4.00;

FATHER NODE X = 4.00 Y = 4.00 DENSITY= 10.00 DrawCom I
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Children

FATHER NODS X = 3.50 Y = 2.50 DENSITY-= 37.50 DrawCom: 0

Children :X= 4.00 Y = 2.001 X= 4.00 Y = 3.00:

FATHER NODE X = 4.00 Y = 2.00 DENSITY= 30.00 DrawCom: 0

Childre.1 :X= 4.00 Y = 3.001 ===

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

Children:===

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

Children:===

k ATHER NODE X = 2.50 Y = 2.50 DENSITY= 70.00 DrawCom: 0

Children :X= 3.00 Y = 2.001 X= 3.00 Y = 3.001 X= 2.00 Y = 3.00=

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 DrawCom: 0

Children:===

FATHER NODE X = ý.00 Y = 3.00 DENSITY= 60.00 DrawCom: 0

Children :X= 3.00 Y = 2.00 1 X= 3.50 Y ý- 2.501
X= 4.00 Y = 3.001 X= 3.50 Y = 3.501
X= 3.00 Y = 4.001

X= 2.00 Y = f.001---

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 DrawCor,: 0

Children :X= 3I.F0 Y = 2.50!

FATHER NODE X = 3.50 Y = 2.50 DENSITY= 37.50 DrawCom: 0

Children -. ==

FATHER NODE X = 3.50 Y = 2.50 DENSITY= 37.50 DrawCorn: 0

Chiliren .X-- 4.00 Y = 3,00

FATHER NODE X - 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

Children

FATHER NODE X 4.00 Y 3.0W DENSITY= 21.00 DrauCom 0

Children: 7-=

FATHER NODE X - 3.50 Y = 3.50 DENSITY= 35.00 DrawCom: 0
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Children :X= 4.00 Y = 3 00 1 X= 4.00 Y = 4.00

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

Children :X= 4.00 Y = 4.00-

FATHER NODE X = 4.00 Y = 4.00 DENSITY= 10.00 DrawCom. 0

Children:===

FATHER NODE X = 4.00 Y = 4.00 DENSITY= 10.00 DrawCom: 0

Children:===

FATHER NODE X = 3.00 Y = 4.00 DENSITY= 50.00 DrawCom: 0

Children :X= 3.50 Y = 3.50
X= 4.00 Y = 4.00'

FATHER NODE X = 3.50 Y = 3.50 DENSITY= 35.00 DrawCom- 0

Children :X= 4.00 Y = 4.00

FATHER NODE X = 4.00 Y - 4.00 DENSITY= 10.00 DrawCom: 0

Children:===

FATHER NODE X = 4.00 Y = 4.00 DENSITY= 10.00 DrawCom: 0

Children:===

FATHER NODE X = 2.00 Y = 3.00 DENSITY= 30.00 DrawCom: I

Chiidrzd.==-=

FATHER NODE X = 2.00 Y = 3.00 DENSITY= 30.00 DrawCom: 0

Chiilren:...

FATHER NODE X = 2.00 , = 3.00 DENSITY= 30.00 DrawCom: 0

Children

S....... 2TH rREE ......

FATHER XODE X 2 M0 Y 4.00 DENSITY= 190.00 DrawCom: 2

Children X 2 00Y N' 00 X= 250Y = 350'
X 3 0.))Y m 4() --

FATHER NODE X - 2.00 Y = 3.00 DENSiT =- 30 00 Dra&Com I

Children - -

FATHER NODE X 2.50 Y 3 50 DENSITY: 82 50 DrawCom 0
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Children :X= 2.00 Y = 3.001 X= 3.00 Y = 3.001 X= 3.0O Y = 4.001

FATHER NODE X = 2.00 Y = 3.00 DENSITY= 30.00 DrawCom: 0

Children:...

FATHER NODE X = 3.00 Y = 3.00 DENSITY= 60.00 DrawCom: 0

Children :X= 2.00 Y = 3.00 X= 3.00 Y = 4.001 ===

FATHER NODE X = 2.00 Y = 3.00 DENSITY= 30.00 DrawCom: 0

Children:===

FATHER NODE X = 3.00 Y = 4.00 DENSITY= 50.00 DrawCom: 1

Children -=

FATHER NODE X = 3.00 Y = 4.00 DENSITY= 50.00 DrawCom: G

Children:===

FATHER NODE X = 3.00 Y = 4.00 DENSITY= 50.00 DrawCom: 0

Children . 1

4.

V..
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APPENDIX D

PROGRAM OUTPUT FOR THE 4X5 GRID

* .a*** .***** DENSITY VALUES OF NODES IN GRID *********

X-> 1 2 3 4 5 6 7

Y ->1- 20000 50.000 90.000 70.000 67.500 82.500 57.500

2- 50.000 150.000 40.000 30.000 57.500 70.000 37.5W

3- 0.000 30.000 60.000 20.000 57.500 82.500 35.000

"4- 10.000 190.000 50.000 10.000 77.500 72.500 17.50

5- 70.000 40.000 10.000 0.000 0.000 0.000 0.000

Locations Of Average Density Values Start After X = 4

INDEGREE-MATRIX

.1

1) 3 0 0 0 0 00 000 0 0 0 0 0 0 00000 0 0 0 0 00 0 00
2)-I 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3) 0-1 0-1-1 0-1-1 0 0 0-1 0-1 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4)-I 0 0 3 0 0 0 0 0 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5)-i-10-1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0
6) 0-1 0 0 0 0-1-1-1 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7) 0 0 0 0 0 0 6 0 0-1 0 0 0 6 0 0 0-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8) 0-100 0 00 0-1 20 00000 0000000 00 0000000

9) 0 0 0 0 0 0 0 1-1-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10) 0 0 0 0000040 0000-1 0 0 0 0 0 0 0 9 0 0 0 0 0 0 0
11) 0 0 0 0 0 0-10 0-1 2 0 0 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12) 0 0 0 0 0 0 0 0 0 0 0 7-I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13)00000000000050000000000000000000
14) 000- C 0000000-1-1 1000000000000000000
15) 0 0 0 0 0 0-1 0 0 0 0-1 0 0 2 0-1-1 0 0 0-1 0 0-1 0 0 0 0 0 0 0
16)000000-10000-100-1 10000000000000000
17)00000000000000004000000-100000000
18) 000000000-1000000-12 00000000000000
19) 0 00 00 0 0 0 00 0-1 0 00 0 00 0-1-1-1-1 0 0-1 0-1 0-1 0 0
20)000000000000-10000004000000000000
21) 00000000000-1-1 000000-1100000000000
22) 0 G 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0-1-1 0 0 0-1 0 0-I
23) 00000000000-100-1000000-1 1000000000
24) 000000000000000000000004 000000-10
25) 00000000000 0 0 000-1000000-1 20 000000
26) 0000000000000000000000000 A 00-1000
27) 000 00000000 00000000-100000-1 100000
28) 0 00 00 0 00 00 0 00 0 0 0 00 0-1 0 00 0 0-1-1 1 0 00 0
29) 000 00000000000000000000000004 0-10
30) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0-1 0 0-1 1 0 0
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31) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0
32) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0-1 0 0 0 0-1 0-1 1

Ith Tree rooted at value 150.00

Level 50

X Y Z D

2.9091 2.0000 0.0000 1
2.8333 2.1687 0.0000 0
3.0000 2.5000 0.0000 0

3.2222 2.7778 0.0000 0
3.2500 3.0000 0.0000 0
3.2000 Z.2000 0.0000 0
3.0000 4.0000 0.0000 0
2.6667 3.0000 0.0000 1
2.2530 2.7500 0.0000 0
2.0000 2.8333 0.0000 0
1.6364 2.6364 0.0000 0
1.4348 2.5852 0.0000 0
1.0000 2.0000 0.0000 0
1.3158 1.3158 0.0000 0
2.0000 1.0000 0.0000 0
2.8824 1.8824 0.0000 1
2.9091 2.0000 0.0000 0

2th Tree rooted at value 90 00

1,evel 50

X Y Z D

4.0000 1.5000 0.0000 1

3.636-1 1.6364 0.0000 0
3 2857 1.7143 0.0000 0
3.0000 1.8000 G.0000 0
2.8824 1.8824 0.0000 0
2.0000 1.0000 0.0000 1
20000 1.0000 0.0000 0

3th Tree rioted at value 190.00

Level .50

X Y Z D

3.0000 4.0000 0.0000 1
3 0000 4.0000 0.0000 0
2.6800 4.6800 0.0000 0
2.1538 4.8462 0.0000 0
2.0000 4.9333 0.0000 0
L.8687 4.8667 0.0000 0
1.6887 5.0000 0.0000 0
1.0000 4.6667 0.0000 I

.14
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1.2983 4.2963 0.0000 0
1.2222 4.0000 0.0000 0
1.4211 3.5789 0.0000 0
1.4348 3.4348 0.0000 0
1.6364 3.3&6M 0.0000 0
2.0000 3.1250 0.0000 0
2.1905 3.1905 0.0000 0
2.6667 3.0000 0.0000 0
3.0000 4.0000 0.0000 1
3.0000 4.0000 0.0000 0

Ith Tree rooted at value 150.00

Level 100

X Y Z D

2.4545 2.0000 0.0000 1
2.3125 2.3125 0.0000 0
2.0000 2.4167 0.0000 0
1.7297 2.2703 0.0000 0
1.5000 2.0000 0.0000 0
1.6970 1.6970 0.0000 0
2.0000 1.5000 0.0000 0
2.3704 1.6298 0.0000 0
2.4545 20000 0.0000 0

2th Tree rooted at value 90.00

Level 100

X Y Z D

3th Tree rooted at value 190.00

Level 100

X Y Z D

2.6429 4.0000 0.0000 1

2.3830 4.3830 0.0000 0
2.0000 4.6000 0.0000 0

., 1 6000 4.4000 0.0000 0
'p 1.5000 4.0000 3.0000 0
"".1.6"04 3.6604 0.0000 0

2.0000 3.4375 0.0000 0
2.4186 3.5814 0.0000 a
2.6429 4.0000 0.0090 0

Column D is the drawing command, i.e. i SETPOIN'T. 0 = DRAWTO

TRAVERSE TREES IN PRE-ORDER
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ITH TREE *

FATHER NODE X = 2.00 Y = 2.00 DENSITY= 150.00 DrawCom: 2

Children :X= 3.00 Y = 2.001 X= 2.50 Y = 2.501
X= 2.00 Y = 3.001 X= 1.50 Y = 2.501
X= 1.oo Y = 2.00o

X= 1.50 Y = 1.50
X= 2.00 Y = 1.001 X= 2.50 Y = 1.50

FATHER NODE X = 3.00 Y = 2.00 DENSITY-: 40.00 DrawCozu: I

Children :X= 4.00 Y = 2.00I X= 3.50 Y = 2.50

FATHER NODE X = 4.00 Y = 2.00 DENSITY= 30.00 DrawCorn: 1

Children -X= 4.00 Y = 3.001

FATHER NODE X = 4.00 Y =3.00 DENSITY= 20.00 DrawCom: 1

Children :X= 4.00 Y = 4.00,

FATHER NODE X = 4.00 Y = 4.00 DENSITY= 10.00 DrawCom: 1

Children :X= 4.00 Y= 5.00 =

FATHER NODE X = 4.00 Y = 5.00 DENSITY= 0.00 DrawCom: 1

Children:===

FATHER NODE X = 3.50 Y = 2.50 DENSITY= 37.50 DrawCom: 0

Children :X= 4.00 Y = 2.00 X= 4.00 Y = 3.00

FATHER NODE X = 4.00 Y 2.00 DENSITY= 30.00 DrawCom: 0

Children :X= 4.00 Y = 3.00

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

Children:===

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

Children ---

FATHER NODE X = 2.50 Y = 2.50 DENSITY:- 7000 DrawCom: 0

Children :X= 3.00 Y = 2.00 X 3.00 Y = 3.00 X= 2.00 Y = 3.00

FATHER NODE X = 3.00 Y 2.00 DENSITY- 40.00 DrawCom: 0

Children:===
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FATHER NODE X = 3.00 Y = 3.00 DENSITY-- 60 0 DrawCom: 0

Children :X= 3.00 Y = 2.00l X= 3.50 Y = 2.501
X= 4.00 Y = 3.001 X= 3.50 Y =3.501
X= 3.00 Y = 4.001

X= 2.00 Y = 3.001

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.&ý DrawCom: 0

Children :X= 3.50 Y = 2.501

FATHER NODE X = 3.50 Y = 2.50 DENSITY= 37.50 DrawCom: 0

Children:===

FATHER NODE X = 3.50 Y = 2.50 DENSITY= 37.50 DrawCom: 0

Children :X= 4.00 Y = 3.001 ===

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

Children:===

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

Children:===

FATHER NODE X = 3.50 Y = 3.50 DENSITY= 35.00 DrawCom: 0

Children :X= 4.00 Y = 3.001 X= 4.00 Y = 4.00!

FATHER NODE X = 4.00 Y = 3.00 DENSITY= 20.00 DrawCom: 0

"Children :X= 4.00 Y = 4.001

FATHER NODE X = 4.00 Y = 4.00 DENSITY= 10.00 DrawCom: 0

Children:===

FATHER NODE X = 4.00 Y 4.00 DENSITY= 10.00 DrawCom: 0

Children:===

FATHER NODE X = 3.00 Y = 4 00 DENSITY= 50.00 DrawCom: 0

Childrei "X 3 50 Y = 3.50
X= 4.00Y 400 X= 3.50Y= 4.50,
X= 3.00Y = 500

FATHER NODE X = 3.50 Y = 3.50 DENSITY= 35 00 DrawCom: 0

Children :X= 4.00 Y = 4.00;
AL

FATHER NODE X = 4.00 Y 4.00 DENSITY= 10.00 DrawCom' 0
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S~~Children ..

FATHER NODE X = 4.00 Y = 4.00 DENSITY= 10.00 DrawCom: 0

Children:===

FATHER NODE X = 3.50 Y = 4.50 DENSITY= 17.50 DrawCom: 0

Children :X= 4.00 Y = 4.00; X= 4.00 Y = 5.00 i X= 3.00 Y = 5.001

FATHER NODE X = 4.00 Y = 4.00 DENSITY= 10.00 DrawCom: 0

Children :X= 4.00 Y = 5.00 ===

*• FATHER NODE X = 4.00 Y = 5.00 DENSITY= 0.00 DrawCom: 0

Children:===

FATHER NODE X = 4.00 Y = 5.00 DENSITY= 0 00 DrawCom: 0

Children :===

FATHER NODE X = 3.00 Y = 5.00 DENSITY= 10.00 DrawCom: 0

Children :X= 4.00 Y = 5.00! ===

FATHER NODE X = 4.00 Y = 5.00 DENSITY= 0.00 DrawCom: 0

Children:...

FATHER NODE X = 3.00 Y = 5.00 DENSITY= 10.00 DrawCom: 0

Children:===

FATHER NODE X = 2.00 Y 3.00 DENSITY= 30.00 DrawCam: 1

Children :X= 1.00 Y = 3.00

FATHER NODE X = 1.00 Y = 3.00 DENSITY= 0.00 DrawCom: 0

Children -=

FATHER NODE X 2.00 Y = 3.00 DENSITY= 30 00 DrawCom: 0

Children.===

FATHER NODE X 2.00 Y = 3.00 DENSITY= 30.00 DrawCom: 0

Children

FATHER NODE X = 1.50 Y = 2.50 DENSITY= 57.50 DrawCom: 0

Children :X= 2.00 Y = 3 00 X= 1.00Y = 3.00 X= 1.00Y = 2.00 j

FATHER NODE X = 2.00 Y = 3.00 DENSITY= 30.00 DrawCom: 0
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Children :X= 1.00 Y = 3.001

FATHER NODE X = 1.00 Y = 3.00 DENSITY= 0.00 DrawCom: 0

Children

FATHER NODE X = 1.00 Y = 3.00 DENSITY= 0.00 DrawCom: 0

Children:===

FATHER NODE X = 1.00 Y = 2.00 DENSITY= 50.00 DrawCom: 0

Children :X= 1.00 Y = 3.00 1 X= 1.00 Y = 1.00 1 ===

FATHER NODE X = 1.00 Y = 3.00 DENSITY= 0.00 DrawCom: 0

Children:===

FATHER NODE X = 1.00 Y = 1.00 DENSITY= 20.00 DrawCom:" 1

Children:===

FATHER NODE X = 1.00 Y = 2.00 DENSITY= 50.00 DrawCom: 0

Children:===

FATHER NODE X = 1.50 Y = 1.50 DENSITY= 67.50 DrawCom: 0

Children :X= 1.00 Y = 2.001 X= 1.00 Y = 1.00: X= 2.00 Y = 1.00

FATHER NODE X = 1.00 Y 2.00 DENSITY= 50.00 DrawCom: 0

Children :X= 1.00 Y = 1.100 1--

FATHER NODE X = 1.00 Y 1.00 DENSITY= 20.00 DrawCom: 0

Children:===

FATHER NODE X = 1.00 Y 1.00 DENSITY= 20.00 DrawCom: 0

- Children:...

FATHER NODE X = 2.00 Y 1 00 DENSITY= 50 00 DrawCom: 0

Children -X= 1.00 Y = 1.00 ==

FATHER NODE X = 1.00 Y = 1 00 DENSITY= 20.00 DrawCom. u

Children: - =

FATHER NODE X = 2.00 Y = 1.00 DENSITY= 50 00 DrawCom: 0

Children:===

FATHER NODE X = 2.50 Y = 1.50 DENSITY- 82.50 Dra,*Com: 0
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Children :X= 2.00 Y = 1.001 X= 3.00 Y = 2.00, -

FATHER NODE X = 2.00 Y = 1.00 DENSITY= 50.00 DrawCom:" 0

Children .---

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 DrawCom: 1

Children:===

*.***** 2TH TREE *

FATHER NODE X = 3.00 Y = 1.00 DENSITY= 90.00 DrawCom: 2

Children :X= 4.00 Y = 1.001 X= 3.50 Y = 1.501
X= 3.00 Y = 2.001 X= 2.50 Y = 1.50!
X= 2.00 Y = 1.001

FATHER NODE X = 4.00 Y = 1.00 DENSITY= 70.00 DrawCom: I

Children :X= 4.00 Y = 2.00i X= 3.50 Y = 1.50 I

FATHER NODE X = 4.00 Y 2.00 DENS!TY= 30.00 DrawCom: I

Children:===

FATHER NODE X = 3.50 Y = 1.50 DENSITY= 57.50 DrawCom: 0

Children :X= 4.00 Y = 2.001 X= 3.00 Y = 2.001

FATHER NODE X = 4.00 Y = 2.00 DENSITY= 30.00 DrawCom: 0

Children:===

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 Dr.wCoin. 0

Children :X= 4.00 Y = 2.001 ===

FATHEr NODE X = 4.00 Y = 2.00 DENSITY= 30.00 DrawCom: 0

Children .= -

FATHER NODE X 3 50 Y = 1.50 DENSITY= 57.50 DrawCom. 0

Children :X= 3.00 Y = 2.00 -

FATHER NODE X 3 00 Y 2.00 DENSITY= 40.00 DrawCom: 0

Children:===

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 Dra*Com: 0

Children
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FATHER NODE X = 2.50 Y = 1.50 DENSITY= 82.50 DrawCom' 0

Children :X= 3.00 Y = 2.001 X= 2.00 Y = 1.00-

FATHER NODE X = 3.00 Y = 2.00 DENSITY= 40.00 DrawCom: 0

Children.===

FATHER NODE X = 2.00 Y = 1.00 DENSITY= 50.00 DrawCom: 1

Children,.-.

FATHER NODE X = 2.00 Y = 1.00 DENSITY= 50.00 DrawCom: 0

Children:...

****** 3TH TREE ******

FATHER NODE X = 2.00 Y = 4.00 DENSITY= 190.00 DrawCom: 2

Children :X= 3.00 Y = 4.001 X= 2.50 Y = 4.50!
X= 2.00 Y = 5.001 X= 1.50 Y = 4.50l
X= 1.00 Y = 4.01

X= 1.50 Y = 3.50;
X= 2.00 Y = 3.001 X= 2.50 Y = 3.501

FATHER NODE X = 3.00 Y = 4.00 DENSITY= 50.00 DrawCom: I

Children:===

FATHER NODE X = 2.50 Y = 4.50 DENSITY= 72.50 DrawCom: 0

Children :X= 3.00 Y = 4.00, X= 3.00 Y = 5.001 X= 2.00 Y = 5.00

FATHER NODF X = 3.00 Y = 4.00 DENSITY= 50.00 DrawCom: 0

Childrt.n :X= 3.00 Y = 5 00:

FATHER NODE X = 3.00 Y =- 5.30 DENSITY= 10.00 DrawCom: I

Children:===
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